What's next in fundamental and particle physics in space

Bologna INAF-OABO Octobre 1th 2015

R. Battiston Italian Space Agency University and INFN-TIFPA, Trento

Content

Space, time and gravity
Quantum origins and the CMB bonanza
The dark side of the universe
Dark Matter search at accelerators, underground and in space

ACDM model

The Universe is the ultimate laboratory to test fundamental physics.....

.....to scales which cannot be reached by the most powerful accelerators....

Particle content of the concordance ACDM model...

Particle content of the concordance ACDM model...

The concordance flat ACDM model...

The simplest model consistent with observations.

from single-field inflation

....and space - time

not a complete list ...

Henrich It		onica	10 103											
Einstein 1912 Nordstrøm			912	Nords	1913	Einstein & Fokker 1914			914	Einstein 1915				
Whitehead 1922 Cartan			tan 19	23 Kaluza & Klein 1932				2 Fierz & Pauli 1939 Bir				rkhoff 1943		6
Milne 1948 Thiry 1948 Pa			papetrou 1954 Jord				n 1955 Littlewood & Ber				mann	\$		
Brans & Dicke 1961 Yilma			z 196	i2 Whitrow & Morduch				1965 Kustaanheimo & Nuotio 1967						
Page & Tupper 1968 Berg				mann 1968 Deser & Laure				urent	1968 Nordtvedt 1970 Wagoner 19					
Bollini et al. 1970 Rosen 1				Will & Nordtvedt 1972				972	Ni 197	1972 Hellings & Nordtvedt 1972				
Ni 1973 Y	Yilmaz 1973 Light			tman	man & Lee 1973			Lee, Lightman &			Ros	en 19	75	
Belinfante & Swihart 1975				Lee et al. 1976			Bekenstein 1977		Barker 1978 F		Rast	Rastall 1979		
Coleman 1983 Hehl			1997	Overlooked (20th century)				ry)						

 Some authors proposed more than one theory, e.g. Einstein, Ni, Lee, Nordtvedt, Papapetrou, Yilmaz, etc.

Neuton 1686 Deinearé 1990

ЪР

- Some theories are just variations of others
- Some theories were proposed in the 1910s/20s; many theories in the 1960s/70s
- Overlooked: this is not a complete list!

Theory must be:

- Complete: not a law, but a theory. Derive experimental results from first principles
- Self-consistent: get same results no matter which mathematics or models are used
- Relativistic: Non-gravitational laws are those of Special Relativity
- Newtonian: Reduces to Newton's equation in the limit of low gravity and low velocities

"Aesthetics-Based" Conclusion for 20th Century

Newton 1686 Poincaré 1890

Einstein 1912 Nordstrøm 1912 Nordstrøm 1913 Einstein & Fokker 1914 Einstein 1915 Whitehead 1922 Cartan 1923 Kaluza & Klein 1932 Fierz & Pauli 1939 Birkhoff 1943 Milne 1948 Thiry 1948 Papapetrou 1954 Jordan 1955 Littlewood & Bergmann 1956 Brans & Dicke 1961 Yilmaz 1962 Whitrow & Morduch 1965 Kustaanheimo & Nuotio 1967 Page & Tupper 1968 Bergmann 1968 Deser & Laurent 1968 Nordtvedt 1970 Wagoner 1970 Bollini et al. 1970 Rosen 1971 Will & Nordtvedt 1972 Ni 1972 Hellings & Nordtvedt 1972 Ni 1973 Yilmaz 1973 Lightman & Lee 1973 Lee, Lightman & Ni 1974 Rosen 1975 Belinfante & Swihart 1975 Lee et al. 1976 Bekenstein 1977 Barker 1978 Rastall 1979 Coleman 1983 Hehl 1997 Overlooked (20thcentury)

 "Among all bodies of physical law none has ever been found that is simpler and more beautiful than Einstein's geometric theory of gravity"

- Misner, Thorne and Wheeler, 1973

"[...] Unfortunately, any finite number of effects can be fitted by a sufficiently complicated theory.
 [...] Aesthetic or philosophical motives will therefore continue to play a part in the widespread faith in Einstein's theory, even if all tests verify its predictions."

- Malcolm MacCallum, 1976

First decade of 21'st century... they are back!

Homen Homen - Home
Einstein 1912 Nordstrøm 1912 Nordstrøm 1913 Einstein & Fokker 1914 Einstein 1915
Whitehead 1922 Cartan 1923 Kaluza & Klein 1932 Fierz & Pauli 1939 Birkhoff 1943
Milne 1948 Thiry 1948 Papapetrou 1954 Jordan 1955 Littlewood & Bergmann 1956
Brans & Dicke 1961 Yilmaz 1962 Whitrow & Morduch 1965 Kustaanheimo & Nuotio 1967
Page & Tupper 1968 Bergmann 1968 Deser & Laurent 1968 Nordtvedt 1970 Wagoner 19
Bollini et al. 1970 Rosen 1971 Will & Nordtvedt 1972 Ni 1972 Hellings & Nordtvedt 1972
Ni 1973 Yilmaz 1973 Lightman & Lee 1973 Lee, Lightman & Ni 1974 Rosen 1975
Belinfante & Swihart 1975 Lee et al. 1976 Bekenstein 1977 Barker 1978 Rastall 1979
Coleman 1983 Hehl 1997 Overlooked (20th century) Scalar-Tensor Theories
Arkani-Hamed, Dimopoulos & Dvali 2000 Dvali, Gabadadze & Poratti 2003 Strings theory?
Bekenstein 2004 Moffat 2005 Multiple f(R) models 2003-10 Bi-Metric Theories

Need for new theory of gravity:

Newton 1686 Poincaré 1890

- Classical GR description breaks down in regimes with large curvature
- If gravity is to be quantized, GR will have to be modified or extended

Other challenges:

- Dark Matter
- Dark Energy

Motivations for new tests of GR:

- GR is a fundamental theory
- Alternative theories & models
- New ideas & techniques require comprehensive investigations

ACES

Atomic Clock Ensemble in Space

- PHARAO: Cs atomic clock (CNES)
- SHM: Hydrogen maser (ESA)
- Microwave link to ground terminals
- Science goals:
 - Measurement of gravitational redshift
 Precision 50 x 10⁻⁶ in 300 s; 2 x 10⁻⁶ in 10 days
 - Time variations in fine structure constant
 α⁻¹. dα/dt < 10⁻¹⁷ yr⁻¹
 - Search for anisotropies in speed of light
 - $\Delta c/c \sim 10^{-10}$
 - Relativistic geodesy at 10 cm level
- Low-Earth orbit
 - To be installed on ISS in 2015
 - Ground-terminals: Europe, US, Asia,

STE-QUEST

- Space Time Explorer and Quantum Equivalence Space Test
 - Laser-cooled Rb microwave atomic clock
 - ⁸⁵Rb/⁸⁷Rb differential matter interferometer
 - Microwave/optical links to ground terminals
- Science goals:
 - Earth gravitational redshift
 Precision 2 x 10⁻⁷; ultimate aim 4 x 10⁻⁸
 Sun gravitational redshift
 Precision 2 x 10⁻⁹; ultimate aim 6 x 10⁻⁷
 - Universality of propagation of matter waves
 - Measurement of Eötvös parameter to < 10⁻¹⁵

Mission to provide high precision test of Einstein Equivalence Principle, nominal launch in 2022–2024

Gravitational waves

World-Wide Laser Interferometric Gravitational Wave Detector Network

At Low Frequencies: A Universe full of Strong GW Sources

Massive Black Hole Binary (BHB) inspiral and merger

Ultra-compact binaries

Extreme Mass Ratio Inspiral (EMRI)

Cosmic backgrounds, superstring bursts?

LISA Pathfinder

Launch date 2015

ESA gravitational wave detection technology testbed, scheduled launch 2014

NGO: Revealing a Hidden Universe

Presentation to SSAC for the L1 selection, Paris, April 2, 2012

Bernard Schutz and Karsten Danzmann for the NGO Study Team

Testing alternative theories of gravity

- Galaxies seen to have flat rotation curves
 - Standard solution is that they are embedded in massive dark matter haloes
- Alternative: breakdown in Newtonian dynamics when background gravitational field drops below threshold ~ 10⁻¹⁰ m s⁻²
 - MOND (Millegrom), TeVeS (relativistic version of MOND, Bekenstein), and others
- Direct test of modified gravity difficult
 - e.g. at LISA Pathfinder station at L1, background acceleration ~ 6 x 10⁻³ m s⁻²
- But there are saddle points ("bubbles") where fields should cancel
 - e.g. Sun-Earth saddle, ~ 250,000 km from Earth
- After nominal mission, LISA Pathfinder could fly through "MOND bubble"
 - Monitor gravity gradient between test masses
 - Predicted MOND "signal": ~10⁻¹³ m s⁻² for ~300s
 - Only mission planned with required sensitivity

ORIGINS

or

the CMB bonanza

Planck unveils the Cosmic Microwave Background

WMAP, Jarosik et al. (2010) / NASA

Probing the Neutrino Number with CMB data

Changing the Neutrino effective number essentially changes the expansion rate H at recombination.

So it changes the sound horizon at recombination:

$$r_s = \int_0^{t_s} c_s \, dt / a = \int_0^{a_s} \frac{c_s \, da}{a^2 H}.$$

and the damping scale at recombination:

$$r_d^2 = (2\pi)^2 \int_0^{a_*} \frac{da}{a^3 \sigma_T n_e H} \left[\frac{R^2 + \frac{16}{15} \left(1 + R\right)}{6(1 + R^2)} \right]$$

Once the sound horizon scale is fixed, increasing Neff decreases the damping scale and

We expect degeneracies with the Hubble constant and the Helium abundance.

(see e.g. Hou, Keisler, Knox et al. 2013, Lesgourgues and Pastor 2006).

Constraints from Planck and other CMB datasets (95% c.l.)

Planck alone (no pol.) $N_{eff}^{\nu} = 4.53_{-1.4}^{+1.5}$ Planck + WP $N_{eff}^{\nu} = 3.51_{-0.74}^{+0.80}$ Planck + WP + Lensing $N_{eff}^{\nu} = 3.39_{-0.70}^{+0.77}$ Planck + WP + highL $N_{eff}^{\nu} = 3.36_{-0.64}^{+0.68}$ Planck + WP + highL + Lensing $N_{eff}^{\nu} = 3.28_{-0.64}^{+0.67}$

Conclusions:

 Neff=0 is excluded at high significance (about 10 standard deviations). We need a neutrino background to explain Planck observations !

- No evidence (i.e. > 3 σ) for extra radiation from CMB only measurements.
- Neff=4 is also consistent in between 95% c.l.
- Neff=2 and Neff=5 excluded at more than 3 σ (massless).

A. Melchiorri

Should we care about a 2.7 σ signal ?

A MEASUREMENT OF EXCESS ANTENNA TEMPERATURE AT 4080 Mc/s

From a combination of the above, we compute the remaining unaccounted-for antenna temperature to be $3.5^{\circ} \pm 1.0^{\circ}$ K at 4080 Mc/s. In connection with this result it should be noted that DeGrasse *et al.* (1959) and Ohm (1961) give total system temperatures at 5650 Mc/s and 2390 Mc/s, respectively. From these it is possible to infer upper limits to the background temperatures at these frequencies. These limits are, in both cases, of the same general magnitude as our value.

Discovery of the CMB was made at 3.5 σ !

Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant

of the expansion (i.e., $q_0 < 0$). With no prior constraint on mass density other than $\Omega_M \ge 0$, the spectroscopically confirmed SNe Ia are statistically consistent with $q_0 < 0$ at the 2.8 σ Discovery of the accelerating universe was made at 2.8 σ !

A. Melchiorri

Further down the road: Euclid and N_{eff}.

 Euclid will improve Planck's sensitivity to N_{eff} by a factor of ~4 [σ(N_{eff}) ~ 0.055].

2 Euclid spacecraft concepts

Constraints on Neutrino Mass (standard 3 neutrino framework)

- Planck strongly improves previous constraints on neutrino masses.
- Planck TT spectrum prefers a lensing amplitude higher than expected (ALENS=1.2).
- Inclusion of lensing from TTTT weakens the Planck constraint by 20%
- Including BAO results in the best current constraint on neutrino masses of 0.23 eV

CMB POLARIZATION

testing the quantum, inflationary universe at the beginning of space and time

Sensitivity w/ foreground subtraction

 $\sigma(\mathbf{r}) = 0.45 \times 10^{-3}$ for r = 0.01, including foreground removal and cosmic variance

r < 0.4 x 10⁻³ (95% C.L.) for undetectably small r

Residual computation method: Errard et al. 2011, Phys. Rev. D 84, 063005 and another paper in preparation

Take-home messages

$\sigma(r) \sim 0.01$ in ~5 years

$\sigma(r) \sim 0.001$ in 2020s

Exciting period ahead of us !

The dark side of the universe

We need light (QED and interactions)....

→ ESA'S FLEET ACROSS THE SPECTRUM

eesa

Thanks to cutting edge technology, astronomy is today unveiling a new universe around us. With ESA's fleet of spacecraft, science can explore the full spectrum of light, see into the hidden infrared universe, visit the untarted and violent universe, chart our galaxy and even look back at the dawn of time.

Unveiling the cool and dusty Universe Striving to observe the first light + gala Surveying a billion stars

17.0

namma rarr

Revealing dark energy, dark matter, and the fate of. the expanding Universe

hst

Expanding the frontiers' of the visible Universe

> Seeing deeply into the het and violent Universe

> > Seeking out the extremes of the Universe

> > > European Space Agency

Looking back

at the dawn of time

38

Herschel Space Observatory

ESA-NASA far-infrared astrophysics observatory, launched 2009

Carina Nebula in the far-IR: cool dust

Carina Nebula in the visible: ionised gas

Hubble Space Telescope

NASA-ESA UV-optical-near-IR astrophysical observatory, launched 1990, last servicing May 2009

Hubble eXtremely Deep Field

HST / NASA, ESA, Garth Illingworth etal., HUDF09 team

A very distant Type 1a supernova

HST WFC3 / Supernova in Hubble Ultradeep Field / ESA, NASA, Adam Riess, Steven Rodney

Evidence for an accelerated expansion

Supernova Type 1a Hubble diagram, Riess et al. 2007

James Webb Space Telescope

NASA-ESA-CSA optical-infrared astrophysics observatory, scheduled launch 2018

Euclid Cosmic Vision M2 mission

1.2m passively cooled telescope to survey 15,000 deg² Visible imaging: RIz(AB) = 24.5 10 σ point source limit Near-IR imaging: YJH(AB) = 24 5 σ point source limit Near-IR R=400 spectroscopy to H(AB) = 22

Athena

Cosmic Vision I2 mission

ESA X-ray astrophysics observatory, launched 1999

Multiple probes of evolving cosmic structure

Weak lensing

Galaxy shapes systematically distorted by intervening matter (baryonic and dark)

Wide-field, high-resolution visible imaging measures shear; near-IR imaging photometry measures photo-z's for lensed galaxies

Baryon acoustic oscillations

Center for Cosmological Physics, Chicago

Initial structure imprinted on Universe at recombination has characteristic scale; follow its evolution as standard ruler to present epoch (now ~ 150 Mpc)

Near-IR spectroscopy provides accurate redshifts and 3D maps

Combined with Planck data, Euclid will yield DE parameters w to <1% and w_a to < 5% Very large legacy survey data set for many other kinds of science

Dark matter maps reveal cosmic scaffolding

- Deep multi-λ survey of COSMOS field
 - 1.67 square degree field
 - 1000 hrs with HST
 - 400 hrs with XMM-Newton
- Sensitivity to different components
 - Optical-infrared: cold baryonic matter
 - X-ray: hot baryonic matter
 - Gravitational lensing: total matter (baryonic + dark)
- Tomographic reconstruction of dark matter
 - Large scale distribution resolved in 3D
 - Loose network of filaments, growing over time
 - Intersections coincident with massive galaxy clusters

Dark Matter

NATURAL SUSY

If SUSY is natural LHC is capable of discovering it

- Stop < 700 GeV
- Gluino < 1500 GeV
- Higgsino < 350 GeV

arxiv: 1110.6926

ATLAS Searches' - 95% CL Lower Limits (Lepton-Photon 2011) MSUGRA/CMSSM : 0-lep + E Trains Simplified model (light 2) : 0-lep + E Trains Simplified model (light 2) : 0-lep + E Trains Simplified model (light 2) : 0-lep + E Trains Simplified model (light 2) : 0-lep + E Trains Simplified model (light 2) : 0-lep + E Trains Simplified model (light 2) : 0-lep + E Trains Simplified model (light 2) : 0-lep + E Trains Simplified model (light 2) : 0-lep + E Trains Simplified model (light 2) : 0-lep + E Trains Simplified model (light 2) : 0-lep + E Trains Pheno-MSSM (light 2) : 2-lep OS + E Trains Simplified model : TY + E Trains GMSB : stable T Simplified model : TY + E Trains GMSB : stable T Stable massive particles : R-hadrons Stable massive particles : R-hadrons Stable massive particles : R-hadrons Res with k/M n = 0.1 : may Res with k/M n = 0.1 : may Stable massive particles : R-hadrons Res with k/M n = 0.1 : may			0.5% 01 1	11 10 11	DI	10		
$\begin{array}{c} \mbox{MSUGRA/CMSSM}: 0-lep + E_{Tables} \\ \mbox{Simplified model} (light \frac{f}{2}): 2-lep S + E_{Tables} \\ \mbox{simplified model} (light \frac{f}{2}): 2-lep S + E_{Tables} \\ \mbox{simplified model} (\frac{f}{2} \rightarrow \frac{f}{2}, \frac{f}$		ATLAS Searches*	- 95% CL Lowe	er Limits (Lepton-	Photon 2011)		
$\begin{aligned} \begin{array}{c} \text{Index for even (light $\frac{7}{2}$): 0-lep + E_{T,riss} \\ \text{Simplified model (light $\frac{7}{2}$): 0-lep + E_{T,riss} \\ \text{Simplified model (light $\frac{7}{2}$): 0-lep + E_{T,riss} \\ \text{Simplified model (light $\frac{7}{2}$): 0-lep + E_{T,riss} \\ \text{Index if participation (light $\frac{7}{2}$): 0-lep + E_{T,riss} \\ \text{Index if participation (light $\frac{7}{2}$): 0-lep + E_{T,riss} \\ \text{Index if participation (light $\frac{7}{2}$): 0-lep + E_{T,riss} \\ \text{Index if participation (light $\frac{7}{2}$): 0-lep + E_{T,riss} \\ \text{Index if participation (light $\frac{7}{2}$): 0-lep + E_{T,riss} \\ \text{Index if participation (light $\frac{7}{2}$): 0-lep + E_{T,riss} \\ \text{Index if participation (light $\frac{7}{2}$): 0-lep + E_{T,riss} \\ \text{Index if participation (light $\frac{7}{2}$): 2-lep S + E_{T,riss} \\ \text{One and if participation (light $\frac{7}{2}$): 2-lep S + E_{T,riss} \\ \text{One and if participation (light $\frac{7}{2}$): 2-lep S + E_{T,riss} \\ \text{Index if participation (light $\frac{7}{2}$): 2-lep S + E_{T,riss} \\ \text{One and if participation (light $\frac{7}{2}$): 2-lep S + E_{T,riss} \\ \text{GMSB (IGGM) + Simpl. model $: $\frac{7}{7}$ + E_{T,riss} \\ \text{GMSB (stable $\frac{1}{7}$): E_{T,riss} \\ \text{Index if participation (light $\frac{7}{2}$): 2-lep S + E_{T,riss} \\ \text{GMSB (light) $\frac{7}{1}$): 10-lep - model $\frac{7}{1}$ max (light) method (light $\frac{7}{1}$): 2-lep S + E_{T,riss} \\ \text{GMSB (light) $\frac{7}{1}$ max (light) method (light) \\ \text{GMSB (light) $\frac{7}{1}$ max (light) method (light) \\ \text{GMSB (light) $\frac{7}{1}$ max (light) method ($	MSUGPA/CMSSM - 0.lan + F			3 - 3 more				
Simplified model (light χ_1): 0-lep + E trains Simplified model (light χ_1^+): 0-lep + E trains mpl. mod. (light χ_1^+): 0-lep + b-jets + E trains mpl. mod. (\bar{q} -tf χ_1^+): 1-lep + b-jets + E trains Pheno-MSSM (light χ_1^+): 2-lep S + E trains GMSB (GGM) + Simpl. model : \bar{q}^+ + E trains GMSB : stable $\bar{\tau}$ Stable massive particles : R-hadrons Stable massive particles : R-hadrons Stable massive particles : R-hadrons RPV (\bar{z}_{1n} =0.01, \bar{z}_{1n} =0.01) : high-mass et Large ED (ADD) : monoid Large ED (ADD) : monoid RS with k/M _{pl} = 0.1 : m _{mini} RS with k/M _{pl} = 0.1 : m _{mini} Quantum black hole (QBH) : m _{odef} F(z) QBH : High-mass σ_{ix}	Classified model (light (⁶) - 0 log + C	Lot be the party presencery	480.000	q = g mass		1010000000000		
Simplified model (light χ^{-}_{i}): 0-lep + $E_{T,mix}$ simplified model (light χ^{-}_{i}): 0-lep + $E_{T,mix}$ mpl. mod. (light χ^{-}_{i}): 1-lep + b-jets + $E_{T,mix}$ pheno-MSSM (light χ^{-}_{i}): 2-lep SS + $E_{T,mix}$ heno-MSSM (light χ^{-}_{i}): 2-lep SS + E_{T,mi	Simplified model (light y): U-lep + E Tunins	L=SACIE_GENTL(Preprint)5	LINE A	vi q = g mass		ATLAS		
Simplified model (light χ_{1}^{2}): 0-lep + E _{T,sike} npl. mod. (light χ_{1}^{2}): 0-lep + b-jets + E _{T,sike} npl. mod. (light χ_{1}^{2}): 2-lep SS + E _{T,sike} here -MSSM (light χ_{1}^{2}): 2-lep SS + E _{T,sike} here -MSSM (light χ_{1}^{2}): 2-lep SS + E _{T,sike} GMSB (sGM) + Simpl. model : $\gamma\gamma$ + E _{T,sike} GMSB (stable $\gamma\gamma$ + E _{T,sike} Stable massive particles : R-hadrons Stable massive particles : R-hadrons RPV (λ_{1st}^{2} =0.01; λ_{2st}^{2} =0.01) : high-mass eµ Large ED (ADD) : monojet UED : $\gamma\gamma$ + E _{T,sike} RS with $k/M_{p_{1}}$ = 0.1 : $m_{p_{1}\gamma}$ RS with $k/M_{p_{1}}$ = 0.1 : $m_{p_{1}\gamma}$ RS with $k/M_{p_{1}}$ = 0.1 : $m_{p_{1}\gamma}$ Quantum black hole (QBH) : $m_{q_{1}\gamma}$, $F(\chi)$ QBH : High-mass σ_{γ} , χ ADD RH (M (M = 2); cm Kite $\gamma\gamma$ + E	Simplified model (light χ_{g}) : 0-lep + E _{T,miss}	(Let 64 TK' (2611) (Pretoricary)	MAGev	q mass		Preliminar		
$\begin{array}{c} \text{ppl. mod. (light \chi_{1}^{-}): 0-lep + B-jets + E _{trains} \\ \text{prime of MSSM (light \chi_{1}^{-}): 1-lep + b-jets + E _{trains} \\ \text{Pheno-MSSM (light \chi_{1}^{-}): 2-lep SS + E _{trains} \\ \text{prime of MSSM (light \chi_{1}^{-}): 2-lep SS + E _{trains} \\ \text{geno-MSSM (light \chi_{1}^{-}): 2-lep SS + E _{trains} \\ \text{GMSB (GGM) + Simpl. model : \gamma\gamma' + E _{trains} \\ \text{GMSB (stable \bar{\tau}) is used in the destination of trains in the destination of $	Simplified model (light χ_1): 0-lep + E _{T miss}	L=LEA (b ((25.11) (Precimitaly))	HICCOV 9	mass	4 4320			
$\begin{array}{c} \text{Interval product} (\overline{g} \rightarrow t \overline{g}_{\lambda}^{-}) : 1 - lep + b - jets + E_{\text{Tarian}} \\ \text{Pheno-MSSM} (light \overline{g}_{\lambda}^{-}) : 2 - lep Ss + E_{\text{Tarian}} \\ \text{terms from properties interval product} \\ \text{terms from properties interval product} \\ \text{Interval product} \\ Interva$	npl. mod. (light χ_{t}) : 0-lep + b-jets + E _{T.miss}	EXEMPTION NETWORK AND ADDRESS OF ADDRES ADDRESS OF ADDRESS OF ADDR	128 Gev. () 11	1853 (10rm(0) < 600 GeV)	f	41 - 104 104 44		
Pheno-MSSM (light χ^{-}_{2}): 2-lep SS + $\mathcal{E}_{T,min}$ heno-MSSM (light χ^{+}_{2}): 2-lep OS + $\mathcal{E}_{T,min}$ GMSB (GGM) + Simpl. model : χ^{+}_{1} + $\mathcal{E}_{T,min}$ GMSB : stable χ^{+}_{1} + $\mathcal{E}_{T,min}$ Stable massive particles : R-hadrons Stable massive particles : R-hadrons Stable massive particles : R-hadrons Stable massive particles : R-hadrons RPV (λ_{2n}^{+} = 0.01, λ_{2n}^{+} = 0.01 : $m_{min}^{+}_{min}$ RS with k/M_{pi} = 0.1 : $m_{min}^{+}_{min}$ RS with k/M_{pi} = 0.2 : $H_{\uparrow} + \mathcal{E}_{T,min}$ RS with k/M_{pi} = 0.2 : $H_{\uparrow} + \mathcal{E}_{T,min}$ Quantum black hole (QBH) : m_{oin} ; \mathcal{E}_{i} QBH : High-mass σ_{i} , \mathcal{E}_{i}	npl. mod. $(g \rightarrow t t \chi_{+})$: 1-lop + b-jets + $E_{T,mins}$	Average the second seco	textex g mass (for $m(\chi_{1}) < 80 \text{ GeV}$	$Ldt = \{0, 0\}$	31 - 1.60) fb		
heno-MSSM (light 2); 2-lep OS st + E raise GMSB (GGM) + Simpl. model : ?? + E raise GMSB : stable 7 Stable massive particles : R-hadrons Stable massive particles : R-hadrons Stable massive particles : R-hadrons Stable massive particles : R-hadrons RPV (2; = 0.01, 2; = 0.01) : high-mass eµ Large ED (ADD) : monojet UED : ?? + E raise RS with k/M _{pl} = 0.1 : m _{ri} RS with g mass / g = -0.20 : H ₁ + E raise Quantum black hole (QBH) : m _{ri} = 0.1 : m _{ri} RS with g mass / g = -0.20 : H ₁ + E raise Quantum black hole (QBH) : m _{ri} = 0.1 : m _{ri} RS with g mass / g = -0.20 : H ₁ + E raise Quantum black hole (QBH) : m _{ri} = 0.1 : m _{ri} QBH : High-mass g , x same / g = -0.20 : H ₁ + E raise raise / g = -0.20 : H ₁ + E raise raise / g = -0.20 : H ₁ + E raise Compact scale 1/R RS with g mass / g = -0.20 : H ₁ + C raise RS with g mass / g = -0.20 : H ₁ + E raise RS with g mass / g = -0.20 : H ₁ + C raise RS with g mass / g = -0.20 : H ₁ + C raise RS with g mass / g = -0.20 : H ₁ + C raise RS with g mass / g = -0.20 : H ₁ + C raise RS with g mass / g = -0.20 : H ₁ + C raise RS with g mass / g = -0.20 : H ₁ + C raise RS with g mass / g = -0.20 : H ₁ + C raise RS with g mass / g = -0.20 : H ₁ + C raise RS with g mass / g = -0.20 : H ₁ + C raise RS with g mass / g = -0.20 : H ₁ + C raise RS with g mass / g = -0.20 : H ₁	Pheno-MSSM (light $\tilde{\chi}_{1}$): 2-lep SS + E T mins	L+03 ye 1 (2010) (#18x.1803.6214)	en ouvil q ma	855	2	15 - 7 Tel		
GMSB (GGM) + Simpl. model : $\frac{1}{17}$ + E Image (and	heno-MSSM (light 2) (2-lep OS se + E Tunis	A HER JAN TO DATE HAR AREA	mans q mass		-	AP = 1 101		
$\begin{array}{c} GMSB:stable\bar{\tau}\\ Stablemassiveparticles:R-hadrons\\ Stablemassiveparticles:R-hadrons\\ Stablemassiveparticles:R-hadrons\\ Stablemassiveparticles:R-hadrons\\ Stablemassiveparticles:R-hadrons\\ Stablemassiveparticles:R-hadrons\\ Stablemassiveparticles:R-hadrons\\ RPV(\lambda_{3:n}^{*}=0.01,\lambda_{3:n}^{*}=0.01):high-massend\\ LargeED(ADD):monojet\\ UED:\gamma\gamma \in E\\Trains\\ RSwithk/M_{pi}=0.1:m_{\gamma\gamma}\\ RSwithk/M_{pi}=0.1:m_{\gamma\gamma}\\ RSwithk/M_{pi}=0.1:m_{\gamma\gamma}\\ RSwithk/M_{pi}=0.1:m_{\gamma\gamma}\\ RSwithk/M_{pi}=0.1:m_{\gamma\gamma}\\ QBH:High-massG_{i,N}\\ QBH:High-massG_{i,N}\\ QBH:High-massG_{i,N}\\ ADDRHK(MRc):monbiesG_{i,N}\\ ADDRHK(MRc):MHSGN,M\\ RSMMRSNMRSMMMMSSSMMMMMSSSMMMMSSSMMMMMSSSMMMMMSSSMMMMMSSSMMMMSSSMMMMMSSSMMMMMMSSSMMMMMSSSMMMMMMMM$	GMSB (GGM) + Simpl. model : TY + E	A HOR WE TOUT OF THE WAY IN THE TABLET	mass g mass					
Stable massive particles : R-hadrons Stable massive particles : R-hadrons Stable massive particles : R-hadrons RPV ($\lambda_{3,n}=0.01, \lambda_{3,n}=0.01$) : high-mass equ Large ED (ADD) : monojet UED : $\gamma\gamma + E_{\gamma,ning}$ RS with $k/M_{pi} = 0.1 : m_{\gamma\gamma}$ RS with $k/M_{pi} = 0.1 : m_{\gamma\gamma}$ <	GMSB : stable T	COT JO TO DO AND AND AND AND TO DAY TO BESS						
Stable massive particles : R-hadrons Stable massive particles : R-hadrons RPV ($\lambda_{3:11}=0.01, \lambda_{3:12}=0.01$) : high-mass eµ Large ED (ADD) : monojet UED : $\gamma\gamma + E_{T,miss}$ RS with $k/M_{p1}=0.1:m_{\gamma\gamma}$ RS with $k/M_{p1}=0.1:m_{\gamma\gamma}$ RS with $k/M_{p1}=0.1:m_{\gamma\gamma}$ RS with $k/M_{p1}=0.1:m_{\alpha(p1)}, F(\chi)$ Quantum black hole (QBH) : $m_{\alpha(p1)}, F(\chi)$ QBH : High-mass $\sigma_{1,*X}$ ADD BH / M / $M = 2$: multiple	Stable massive particles : R-hadrons	Exchanges ⁽¹⁾ (20112) (across 1982), being	mater g mass	A Great	Desert			
Stable massive particles : R-hadrons RPV ($\lambda_{3:1}=0.01, \lambda_{3:2}=0.01$) : high-mass equilibrium responses and responses of the second se	Stable massive particles : R-hadrons	Average " (2010) (artist, 1963, 1964) 214 Carl	b mass	in or out	Deserv			
$\begin{array}{c} \operatorname{RPV}\left(\lambda_{3,11}^{*}=0.01,\lambda_{3,12}^{*}=0.01\right): \operatorname{high-mass}\operatorname{eta}\\ \operatorname{Large}\operatorname{ED}\left(\operatorname{ADD}\right): \operatorname{monojet}\\ \operatorname{UED}: \gamma\gamma + E_{\text{T,miss}}\\ \operatorname{RS} \operatorname{with} k/M_{pi}=0.1: m_{\gamma\gamma}\\ \operatorname{RS} \operatorname{with} k/M_{pi}=0.1: m_{pi}\\ \operatorname{RS} \operatorname{with} g_{gi}=-0.20: H_{T} + E_{T,miss}\\ \operatorname{Quantum} \operatorname{black} \operatorname{hole}\left(\operatorname{QBH}\right): m_{diget}, F(\chi)\\ \operatorname{QBH}: \operatorname{High-mass} g_{1+\chi}\\ \operatorname{QBH}: \operatorname{High-mass} g_{1+\chi}\\ \operatorname{RS} \operatorname{with} g_{gi}=0.20: H_{T} + E_{T,miss}\\ \operatorname{QBH}: \operatorname{High-mass} g_{1+\chi}\\ \operatorname{RS} \operatorname{with} g_{gi}=0.20: H_{T} + g_{pi}\\ \operatorname{RS} \operatorname{with} g_{gi}=0.$	Stable massive particles : R-hadrons	Less yet (2010) persentes raining Station	t mass					
Large ED (ADD) : monojet UED : $\gamma\gamma + E_{T,miss}$ Large in (project and eq) Large in (project and eq) RS with $k/M_{pi} = 0.1 : m_{\gamma\gamma}$ Large in (project and eq) Entry in (project and eq) Compact scale 1/R RS with $k/M_{pi} = 0.1 : m_{\gamma\gamma}$ Large in (project and eq) Entry in (project and eq) Entry in (project and eq) RS with $k/M_{pi} = 0.1 : m_{pi}$ Large in (project and eq) Entry in (project and eq) Entry in (project and eq) RS with $g_{good x}/g_{go}^{=}=0.20 : H_{T} + E_{T,miss}$ Large in (project and eq) Entry in (project and eq) Quantum black hole (QBH) : $m_{diget}, F(\chi)$ Large interproject and eq) Entry interproject and eq) Entry interproject and eq) QBH : High-mass σ_{1+X} Large interproject and eq) Large interproject and eq) Entry interproject and eq) ADD BH (M (M = 2) : multiplicate Contract and eq) Large interproject and eq) Large interproject and eq) Large interproject and eq)	RPV (λ.,=0.01, λ.,=0.01) : high-mass eµ	L-GRTIN [®] (2011) (Trainmining)	HODER V, MASS					
$\begin{array}{c} \text{UED}: \gamma\gamma + E_{\text{Tarrise}} \\ \text{RS with } k/M_{pi} = 0.1 : m_{\gamma\gamma} \\ \text{RS with } k/M_{pi} = 0.1 : m_{\gamma\gamma} \\ \text{RS with } k/M_{pi} = 0.1 : m_{pi} \\ \text{RS with } k/M_{pi} = 0.1 : m_{pi} \\ \text{RS with } g_{\text{gargets}}/g_{\text{g}} = -0.20 : H_{\text{T}} + E_{\text{Tarrise}} \\ \text{Quantum black hole } (\text{QBH}) : m_{\text{cleat}}, F(\chi) \\ \text{QBH : High-mass } \sigma_{1,+\chi} \\ \text{ADD RH} (M = 2) : multijet \Sigma \circ M_{1}^{1/2} \\ \end{array}$	Large ED (ADD) : monojet	Exclusion (perception and and and	and the second	ADDA M	0 (8=2)			
RS with $k/M_{pi} = 0.1 : m_{pi}$ Colspan="2">Colspan="2" Colspan="2" Colspan="2" Colspan="2" <th <="" colspan="2" td="" th<=""><td>UED : YY + E</td><td>Lease on Training percentation and a</td><td>NOT Get?</td><td>Compact. scale 1/R</td><td></td><td></td></th>	<td>UED : YY + E</td> <td>Lease on Training percentation and a</td> <td>NOT Get?</td> <td>Compact. scale 1/R</td> <td></td> <td></td>		UED : YY + E	Lease on Training percentation and a	NOT Get?	Compact. scale 1/R		
RS with $k/M_{\rm Pl} = 0.1: m_{\rm pel/pl}$ Construction from the second sec	RS with $k/M_{pl} = 0.1$: m_{rs}	L-08-e *(2010) (47LAB-008F-0011-644)	839 DeV.	Graviton mass				
RS with $g_{\text{model}}/g_{\text{model}}^{=}=0.20$: $H_{T} + E_{\text{T,miss}}$ Letter is faith inversional ansatz KK gluon mass Quantum black hole (QBH) : $m_{\text{obst}}, F(z)$ Cate is faith inversional ansatz KK gluon mass QBH : High-mass σ_{1+X} Cate is faith inversional company and and m_D ansatz M_D ($\delta=6$) ADD RH (M_{1}/M_{2} : multiple So σ_{1+X} Cate is faith inversional company and and m_D M_D ($\delta=6$)	RS with $k/M_{\rm Pl} = 0.1 : m_{\rm min}$	L-138-1.010-1 (2011) (anim(110).1002)		Lister Graviton mass	R. C.			
Quantum black hole (QBH): m_{dist} , $F(\chi)$ Lessed percentance Lessed percentance M _D (δ =5) QBH: High-mass $\sigma_{1,2}$ Lessed percentance Lessed percentance Lessed percentance ADD RH (M, (M, =3)): multiplet S $\sigma_{1,2}$ Lessed percentance Lessed percentance	RS with $g = -0.20$: $H_1 + E_{Traine}$	k-184 (b ⁻¹ 0811) (Preterinary)	BAD Carl	KK gluon mass				
QBH : High-mass of an interest company and and an and Mp	Quantum black hole (QBH) : m F(x)	6 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1		147.84	M_ (8=6)			
ADD BH (M (M =2) - multilet S o M	QBH : High-mass o	LACE SHIT (2010) (ATLAE CONFLORT LENS		LIDING MA				
$M_{\rm A}$ [$M_{\rm B}/M_{\rm B}$ = 3] : (1000) ($M_{\rm B}$ = 000) ($M_{\rm A}$ = 000) ($M_$	ADD BH $(M_{o}/M_{o}=3)$: multijet Σp_{o} , N_{o}	LASS up " (2010) 1471 AD-COMP-ONT-MINE		17 19 Ma (5=5)				
ADD BH (M, /M, =3) : SS dimuon N at an I rate of the second and the second and the Ma (5=6)	ADD BH (M./M.=3) : SS dimuon N.	List an USIO INTLAS CONFADITING		M. (5=6)				

qquu contact interaction : m SSM : meter SSM : m Leia Scalar LQ pairs (6=1) : kin. vars. in eejj. evjj Scalar LQ pairs (8=1) : kin. vars. in uujj. uvjj 4" generation : coll. mass in Q Q → WqWq 4th generation : d d → WtŴt (2-lep SS) TT_{401 gen} → tt̃ + A_gA_g : 1-lep + jets + E_{T min} Major. neutr. (LRSM, no mixing) : 2-lep + jets Major. neutr. (LRSM, no mixing) : 2-lep + jets H[±] (DY prod., BR(H[±]→µµ)=1) : m

gggg contact interaction : F3(mdiet)

SUSY

Extra dimensions

Z/WCL

2

Offier

Excited quarks : m diversion) Axigluons : maint Color octet scalar : malet 111

10-1

HERE IN THE REPORT OF A DESCRIPTION OF A

Mass scale [TeV]

10

8.7 TeV

4 B THY A

LINENV Z' THREE

N mass (m(W_) = 1 TeV)

T⁴ gen, LO mass

Q, mass

mass Tmass

Ht mass

naciwi d, mass

2¹⁴ gen. LQ mass

5 1 1

LILTW W mass

We mass (230 < m(N) < 700 GeV)

an two of mass

tw Axigluon mass

Scalar resonance mass

*Only a selection of the available results leading to mass limits shown

BEFORE LHC RUN I

AFTER LHC RUN I

F. Giordano, IFAE 2015

SO WHAT IS NEXT?

- LHC so far has found no evidence of SUSY particles
- Run I data are still being exploited to turn every stone
- Nonetheless SUSY is still far from being dead
- Surprises can still happen in RUN2

13 TEV !

DIRECT SEARCHES

DM and Cosmic Rays

1912 Discovery of Cosmic Rays

Victor Hess

REPRODUZIONE DELI SLETTROMETRODI WULF, UMTODA VICTOR HESSINER SCOPRING LESISTENDI OGI PADCI COSNICI UTILIZZANDO UN PALLONEASROSIA TICO (MODELLO REALIZA-TO FER LA MOSTRA DALLA SECONE INFRIDI PADDAA).

Victo Hess used electrometers and hot air balloons

Nobel 1936

Exitence of antimatter

Paul A.M. Dirac

Theory of electrons and positrons, 1928 Nobel Lecture, December 12th, 1933

Relativity:

$$\frac{W^2}{c^2} - p_{r^2} - m^2 c^2 = 0$$

Quantum mechanics

$$\frac{W^{2}}{c^{2}} - p_{r^{2}} - m^{2}c^{2}]\Psi = 0$$

$$m^{2} = (m)(m) = (-m)(-m)$$

Dirac asked himself: what's (-m) antimatter theory

Dmitri Skobeltzyn

R. Millikan

Positron adventure

Patrick M.S. Blackett

Giuseppe "Beppo" Occhialini

Positron adventure

C.Anderson

C.Anderson 1932 finds the positrons in cosmic rays

Nobel 1936

Space Missions and LDF

CRs in the interstellar medium

AMS-02 since May 16th 2011 collecting cosmic ray data on the ISS

Nuclear Instruments and Methods in Physics Research A 350 (1994) 351-367 North-Holland

An antimatter spectrometer in space

Antimatter Study Group

S. Ahlen^f, V.M. Balebanov^a, R. Battiston^l, U. Becker^g, J. Burger^g, M. Capell^g,

H.F. Chen ^p, H.S. Chen ^o, M. Chen ^g, N. Chernoplekov ^b, R. Clare ^g, T.S. Dai ^g,

A. De Rujula^{f,*}, P. Fisher^d, Yu. Galaktionov^c, A. Gougas^d. Gu Wen-Oiⁿ.

M. He^q, V. Koutsenko^c, A. Lebedev^c, T.P. Li^o, Y.S. Lu^S

Y. Ma^o, R. McNeil^e, R. Orava^J, A. Prevsner^d, V. Plyask R. Sagdeev^h, M. Salamonⁱ, H.W. Tang^o, S.C.C. Ting^g, J

Xia Ping-Chouⁿ, Z.Z. Xu^p, J.P. Wefel^e, Z.P. Zhang^p, B.

^a Space Research Institute, Russian Academy of Sciences, Moscow, Russian Federa ^b Kurchatov Atomic Institute, Moscow, 123182 Russian Federation

^c Institute of Theoretical and Experimental Physics, ITEP, Moscow, 117259, Russi

- ^d Johns Hopkins University, Baltimore, MD 21218, USA
- ^e State University of Louisiana, Baton Rouge, LA 70803, USA
- ^f Boston University, Boston, MA 02215, USA
- ⁸ Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- ^h East-West Center for Space Science, University of Maryland, College Park, MD
- ¹ University of Utah, Salt Lake City, UT 84112, USA
- SEFT Research Institute for High Energy Physics, Helsinki, 00014 Finland
- ^k University of Bologna and INFN Sezione di Bologna, 40126 Bologna, Italy
- ¹ Perugia University and INFN Sezione di Bologna, 06100 Perugia, Italy

Fig. 6. Magnetic field distribution at a cross-section of the center of the magnet.

Electron E=982 GeV

Run/Event 1329775818/ 60709

Positron E=636 GeV

Run/Event 133119-743/ 56950

AMS-02: entering the era of precision cosmic ray measurement

New Antiproton/Proton Ratio

Above previous estimate of secondary production

Will the DM mistery will be solved through CR ? Stay tuned !

Open issues after AMS-02

- Dark matter (LHC will not be able to explore mχ> few 100 GeV)
 - Positrons at the 1-10 TeV scale
 - Antiprotons at the 1 TeV scale
 - Gamma rays at the TeV scale
 - Antideuterons at the GeV scale
- Spectral features at the knee scale
 - Protons at the PeV scale
 - Helia at the PV scale
 - Ions at the 100 TV scale

How to reach the O(10 TeV) scale ?

• Exposure : increase by a factor O(100) for e+

From 0.05 to 5 m2sr

Detector : capable to deal with 10 TeV particles

 Tracker + Magnet → MDR > 20 TV
 ECAL → ECAL+HCAL

AMS-03 : expected rates detection tools/limitations

ELECTRON AND POSITRON PHYSICS @ AMS-03

5	m2 sr	3,14E+07	s/y			ACCESSIBLE	EXCLUDED	EXCLUDED
eV	10^8	10^9	10^10	10^11	10^12	10^13	10^14	10^15
scale	100MeV	GV			тv			PV
Integral . 1/y	.@ 0,1-1	.@ 1-10	.@ 10-100	.@ 100-1000	.@ 1.000 ->	.@ 10.000 ->	.@ 100.000 ->	.@ 1.000.000 ->
e-	4,99E+10	3,11E+09	1,56E+08	9,33E+05	7,78E+03	7,78E+01	7,78E-01	7,78E-03
e+	2,50E+09	1,56E+08	1,56E+07	1,40E+05	1,17E+03	1,17E+01	1,17E-01	1,17E-03
	tracker, TOF, TRD,	tracker, TOF, TRD,						
Detectors	ECAL	ECAL	Tracker, TRD, ECAL	Tracker, TRD, ECAL	Tracker, SRD, ECAL	Tracker, SRD, ECAL		
	R, beta, gamma,	R, beta, gamma,			R,Energy, Syncrotron	R, Energy, Synchroton		
Variables	energy	energy	R, gamma, energy	R, gamma, energy	Radiation	Radiation		
	Van Allen, solar,	solar, geomagnetic,	DM, galactic,	DM, galactic,		DM, galactic, moon		DM, extragalactic,
Physics	subcutoff	galactic	asymmetries	asymmetries	DM, galactic	shadow, sun shadow	DM, galactic	knee
	acceptance vs R, live	acceptance vs R, live	acceptance vs R, live	acceptance vs R. live	acceptance vs R, live	accentance vs R live		
	inner tracker,	inner tracker,	inner tracker,	time, efficiency, MC,	outer tracker,	time, efficiency, MC,		
	alignement, TOF calibration, TRD	alignement, TOF calibration, TRD	alignement, TOF calibration, TRD	TRD, alignement.	alignement, SRD calibration, ECAL	tracker, alignement,		
	calibration, backtracing	calibration, backtracing	calibration, backtracing	backtracing (Earth-	calibration, backtracing	calibration, backtracing		
	(near Earth)	(near Earth)	(near Earth)	Moon, Earth- Sun)	Earth-Moon, Earth-Sun	Earth-Moon, Earth-Sun		
Background e-	-	-	-	p	p	p	p	р
Background e+	p	р	p	p	р	p	P	. <u>р</u>
	multiple, scattering				SRD Acceptance, MDR	SRD acceptance, MDR		
	acceptance,AMS02				Tracker, ECAL must be	Tracker, ECAL must be		
Limitations	magnetic field		-		in accceptance	in accceptance	no statistics	no statistics

AMS-03 : expected rates and detection tools/limitations

PROTON (ANTIPROTON) and HELIUM PHYSICS @ AMS-03

5	m2 sr	3,14E+07	s/γ	-		ACCESSIBLE	ACCESSIBLE	ACCESSIBLE
	10^8	10^9	10^10	10^11	10^12	10^13	10^13	10^13
	100MeV	GV			тv			PV
Integral . 1/y	.@ 0,1-1	.@ 1-10	.@ 10-100	.@ 100-1000	.@ 1.000 ->	.@ 10.000 ->	.@ 100.000 ->	.@ 1.000.000 ->
р	4,99E+10	9,96E+10	1,99E+10	3,97E+08	7,19E+06	1,44E+05	2,86E+03	5,71E+01
Не	1,80E+09	1,79E+10	3,58E+09	7,14E+07	1,29E+06	2,58E+04	5,15E+02	1,03E+01
Detectors	tracker, TOF, RICH	Tracker, (RICH)	Tracker	Tracker	Tracker	Tracker+ HCAL	Tracker+ HCAL	Tracker+ HCAL
Variables	R, beta	R	R	R	R	R, Energy	Energy	Energy
Physics	Van Allen, solar, subcutoff	solar, geomagnetic, galactic	galactic	galactic	galactic, moon shadow, sun shadow	galactic, moon shadow, sun shadow	galactic	extragalactic, knee
Tools Background p Background He	acceptance vs R, live time, efficiency, MC, inner tracker, alignement, TOF calibration, RICH calibration, Bicch calibration, backtracing(near Earth) - He3/He4 multiple, scattering, acceptance,AMS02 magnetic field	acceptance vs R, live time, efficiency, MC, inner tracker, alignement, , RICH calibration, backtracing (near Earth) - He3/He4	acceptance vs R, live time, efficiency, MC, inner tracker, alignement, TOF calibration, RICH calibration, backtracing near Earth) - He3/He4	acceptance vs R, live time, efficiency, MC, inner/outer tracker, alignement, backtracing Earth- Moon, Earth- Sun) - He3/He4 different tracker acceptances, alignement	acceptance vs R, live time, efficiency, MC, outer tracker, alignement, , ECAL calibration, backtracing Earth-Moon, Earth-Sun -	acceptance vs R, live time, efficiency, MC, tracker, alignement, HCAL calibration, backtracing Earth- Moon, Earth- Sun -	acceptance vs R, live time, efficiency, MC, tracker, alignement, HCAL calibration, backtracing Earth- Moon, Earth- Sun -	HCAL calibration, backtracing Earth-Moon, Earth- Sun

AMS-03-SC concept

PRELIMINARY DESIGN with HT-MgB2 SC magnet

ToF + Tracker + Ecal/HCAL + SRD-Like

SRD-like: 2D X-ray detector to be installed on the top of the magnet on the space station

Magnet: (B) MgB2 double helix (perfect dipole) : Inner radius 130 cm, Height 100 cm, B-field 1 Tesla Weight: < 1 Ton , MDR 56 TV, Acceptance 6 times AMS-02-Magnet

 ECAL: Radius 130cm, tungsten absorber, scintillating fibers with SiPM readout, Thickness 32 cm, 37 Radiation Length,
 Weight ~15 Tons Acceptance 75 times AMS-02 ECAL

Hadronic energy resolution of the ECAL : to be calculated , expected 30-40% @ TV scale

Tracker: 5 carbon fiber disks in a carbon fiber support structure with a top and bottom silicon layer on each disk.

Single Point resolution < 0.002 mm. Technology : CMOS camera arrays being developed for LHC during the last 10 years (record resolution 600 nanometers)

Acceptance: 9 m^2 sr

MDR: 56 TV

High mass DM could justify the physics case for a precision post-AMS-02 large acceptance, high resolution CR space spectrometer to explore the 10 TeV energy range

Conclusions

Conclusions I

One hundred years after the discovery of Cosmic Rays, in the era of the Higgs boson, multimessenger observation of the Universe continues to provide outstanding physics results

The Universe reveal itself through the interaction of mass and energy deforming the space-time texture

A modern class of space observatories is pushing the limits of sensitivities to the edge of space and time, using most sophisticated technologies and Europe is playng a key role in these global scientific enterprises

Current generation of space instruments compete in cost and complexity with the largest LHC experiments

Conclusions 2

The links between astrophysics, cosmology, astroparticle physics and the physics at the accelerators are stronger and deeper than ever

The detailed study of the CMB, light, gamma rays, cosmic rays and gravitational waves are providing extraordinary experimental insights in the early phases of the universe, testing fundamental concepts in particle physics like number of neutrino species, dark matter, symmetry breaking, inflation, phase transitions.....

Still most of the Universe remain unexplained : dark matter, dark energy, absence of antimatter are striking examples of how long is our journey to understand the place we live

