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1912: V. Hess discovers an 
extraterrestrial source of 
ionization: Cosmic Rays 


1930-1932: A. Piccard 
reaches the stratosphere 
with a pressurized 
aluminum gondola 
attached to a ballon


1940: B. Rossi and P. 
Auger measure Extensive 
Air Showers:


CRs up to 104-105 GeV
V. Hess, 1912

An extraterrestrial radiation!
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A. Piccard, 1932



Cosmic ray flux at Earth

Hörandel 2005

3

Below ～1 PeV: satellites and balloons 


Above: ground-based arrays, fluorescence telescopes for showers 
triggered by primary CRs

T



The CR spectrum at Earth
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Hillas criterion: size of 
the system larger than 
the particle gyroradius

～E-2.7

Galactic Extra-Gal 



Galactic Cosmic Rays
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Galactic Galactic 



SNR paradigm: energetics

Baade-Zwicky (1934) energetic argument, updated

€ 

εCR = 0.5eVcm−3

€ 

LCR ≈  WCR

τ conf

 ≈  5 ×  1040  erg s-1

€ 

LSN =  RSN Ekin  ≈  3×  1041 erg s-1
SN in NGC4526

10-20% of SN ejecta kinetic energy converted 
into CRs can account for the energetics

€ 

Vconf =  π R2 h =  2 ×  1067  cm3

€ 

WCR =  εCR Vconf  ≈  2 ×1055  erg
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Fermi mechanism (Fermi, 1954): random scattering leads to energy gain


In a shock a particle gains energy at any reflection (Blandford & 
Ostriker; Bell; Axford et al.; 1978): Diffusive Shock Acceleration (DSA)


!

!

!

!

DSA produces power-law p-α in momentum, depending on the 
compression ratio R=ρd/ρu only. For strong shocks: α=4

SNR paradigm: acceleration mechanism

Upstream (pre-shock)Downstream (post-shock)

Test-particle 
squeezed 
between 

converging 
flows
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Evidence of magnetic field amplification

Narrow (non-thermal) X-ray rims due 
to synchrotron losses of 10-100 TeV 
electrons...


...in fields as large as B～100-500μG

8

Tycho

G. Morlino and D. Caprioli: Strong evidences of hadron acceleration in Tycho’s Supernova Remnant

X!ray profile " 1 keV
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Fig. 9. Projected X-ray emission at 1 keV. The Chandra data points are
from Cassam-Chenaı̈ et al. (2007) (see their Fig. 15). The solid line
shows the projected radial profile of synchrotron emission convolved
with the Chandra point spread function (assumed to be 0.5 arcsec).

indicates the synchrotron emission alone and the solid line cor-
responds to the sum of synchrotron plus thermal bremsstrahlung.

The electron temperature in the downstream, calculated tak-
ing into account only the heating due to Coulomb collisions with
protons (Fig. 3), results in a bremsstrahlung emission peaked
around 1.2 keV which, at its maximum, contributes for about
the 6 per cent of the total X-ray continuum emission only, in
agreement with the findings of Cassam-Chenaı̈ et al. (2007).

In the same energy range there is however a non-negligible
contribution from several emission lines, which becomes more
and more important moving inwards from the FS, where the X-
ray emission is mainly non-thermal (Warren et al., 2005). A de-
tailed model of the line forest is, however, beyond the main goal
of this paper.

The projected X-ray emission profile, computed at 1 keV, is
shown in Fig. 9, where it is compared with the Chandra data in
the region that Cassam-Chenaı̈ et al. (2007) call region W. The
solid curve represents the resulting radial profile, already con-
voluted with the Chandra PSF of about 0.5 arcsec, and shows a
remarkable agreement with the data. As widely stated above, the
sharp decrease of the emission behind the FS is due to the rapid
synchrotron losses of the electrons in a magnetic field as large
as ∼ 300µG. In Fig. 9 we also plot the radial radio profile com-
puted without magnetic damping (dashed line); since the typical
damping length-scale is ∼ 3 pc, it is clear that the non-linear
Landau damping can not contribute to the determination of the
filament thickness.

It is worth stressing that the actual amplitude of the mag-
netic field we adopt is not determined to fit the X-ray rim profile,
but it is rather a secondary output, due to our modelling of the
streaming instability, of our tuning the injection efficiency and
the ISM density in order to fit the observed gamma-ray emis-
sion (see the discussion in §3). We in fact checked a posteriori
whether the corresponding profile of the synchrotron emission
(which, in shape, is also independent on Kep), were able to ac-
count for the thickness of the X-ray rims and for the radio profile
as well.
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Fig. 10. Synchrotron emission calculated by assuming constant down-
stream magnetic field equal to 100 (dotted line), 200 (dashed line) and
300 µG (solid line). The normalization of the electron spectrum is taken
to be Kep = 1.6 × 10−3 for all the curves.

4.3. Radio to X-ray fitting as a hint of magnetic field
amplification

Another very interesting property of the synchrotron emission is
that a simultaneous fit of both radio and X-ray data may provide
a downstream magnetic field estimate independent of the one
deduced by the rims’ thickness.

In fact, assuming Bohm diffusion, the position of the cut-off
frequency observed in the X-ray band turns out to be indepen-
dent of the magnetic field strength, actually depending on the
shock velocity only.

On the other hand, if the magnetic field is large enough to
make synchrotron losses dominate on ICS and adiabatic ones,
the total X-ray flux in the cut-off region depends only on the
electron density, in turn fixing the value of Kep independently
of the magnetic field strength. Moreover, radio data suggest the
slope of the electron spectrum to be equal to 2.2 at low energies,
namely below Eroll ≃ 200 GeV. Above this energy the spectral
slope has in fact to be 3.2 up to the cut-off determined by setting
the acceleration time equal to the loss time, as discussed in §2.5.

In Fig. 10 we plot the synchrotron emission from the down-
stream, assuming a given magnetic field at the shock and ne-
glecting all the effects induced by damping and adiabatic expan-
sion. The three curves correspond to different values of B2 =
100, 200 and 300µG, while the normalization factor Kep is cho-
sen by fitting the X-ray cut-off and it is therefore the same for all
curves. As it is clear from the figure, in order to fit the radio data
the magnetic field at the shock has to be >∼ 200µG, even in the
most optimistic hypothesis of absence of any damping mecha-
nism acting in the downstream.

As a matter of fact, synchrotron emission alone can provide
an evidence of ongoing magnetic field amplification, indepen-
dently of any other evidence related to X-ray rims’ thickness or
emission variability. Such an analysis is in principle viable for
any SNR detected in the non-thermal X-rays for which it is also
possible to infer the spectral slope of the electron spectrum from
the radio data, only requiring radio and X-ray emissions to come
from the same volume and therefore from the same population
of electrons.
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Fig. 9. Projected X-ray emission at 1 keV. The Chandra data points are
from Cassam-Chenaı̈ et al. (2007) (see their Fig. 15). The solid line
shows the projected radial profile of synchrotron emission convolved
with the Chandra point spread function (assumed to be 0.5 arcsec).

indicates the synchrotron emission alone and the solid line cor-
responds to the sum of synchrotron plus thermal bremsstrahlung.

The electron temperature in the downstream, calculated tak-
ing into account only the heating due to Coulomb collisions with
protons (Fig. 3), results in a bremsstrahlung emission peaked
around 1.2 keV which, at its maximum, contributes for about
the 6 per cent of the total X-ray continuum emission only, in
agreement with the findings of Cassam-Chenaı̈ et al. (2007).

In the same energy range there is however a non-negligible
contribution from several emission lines, which becomes more
and more important moving inwards from the FS, where the X-
ray emission is mainly non-thermal (Warren et al., 2005). A de-
tailed model of the line forest is, however, beyond the main goal
of this paper.

The projected X-ray emission profile, computed at 1 keV, is
shown in Fig. 9, where it is compared with the Chandra data in
the region that Cassam-Chenaı̈ et al. (2007) call region W. The
solid curve represents the resulting radial profile, already con-
voluted with the Chandra PSF of about 0.5 arcsec, and shows a
remarkable agreement with the data. As widely stated above, the
sharp decrease of the emission behind the FS is due to the rapid
synchrotron losses of the electrons in a magnetic field as large
as ∼ 300µG. In Fig. 9 we also plot the radial radio profile com-
puted without magnetic damping (dashed line); since the typical
damping length-scale is ∼ 3 pc, it is clear that the non-linear
Landau damping can not contribute to the determination of the
filament thickness.

It is worth stressing that the actual amplitude of the mag-
netic field we adopt is not determined to fit the X-ray rim profile,
but it is rather a secondary output, due to our modelling of the
streaming instability, of our tuning the injection efficiency and
the ISM density in order to fit the observed gamma-ray emis-
sion (see the discussion in §3). We in fact checked a posteriori
whether the corresponding profile of the synchrotron emission
(which, in shape, is also independent on Kep), were able to ac-
count for the thickness of the X-ray rims and for the radio profile
as well.

8 10 12 14 16 18 20
10.0

10.5

11.0

11.5

12.0

12.5

13.0

13.5

Log$Ν% "Hz#

Lo
g$
Ν
F Ν
%
"J
y
H
z#

Fig. 10. Synchrotron emission calculated by assuming constant down-
stream magnetic field equal to 100 (dotted line), 200 (dashed line) and
300 µG (solid line). The normalization of the electron spectrum is taken
to be Kep = 1.6 × 10−3 for all the curves.

4.3. Radio to X-ray fitting as a hint of magnetic field
amplification

Another very interesting property of the synchrotron emission is
that a simultaneous fit of both radio and X-ray data may provide
a downstream magnetic field estimate independent of the one
deduced by the rims’ thickness.

In fact, assuming Bohm diffusion, the position of the cut-off
frequency observed in the X-ray band turns out to be indepen-
dent of the magnetic field strength, actually depending on the
shock velocity only.

On the other hand, if the magnetic field is large enough to
make synchrotron losses dominate on ICS and adiabatic ones,
the total X-ray flux in the cut-off region depends only on the
electron density, in turn fixing the value of Kep independently
of the magnetic field strength. Moreover, radio data suggest the
slope of the electron spectrum to be equal to 2.2 at low energies,
namely below Eroll ≃ 200 GeV. Above this energy the spectral
slope has in fact to be 3.2 up to the cut-off determined by setting
the acceleration time equal to the loss time, as discussed in §2.5.

In Fig. 10 we plot the synchrotron emission from the down-
stream, assuming a given magnetic field at the shock and ne-
glecting all the effects induced by damping and adiabatic expan-
sion. The three curves correspond to different values of B2 =
100, 200 and 300µG, while the normalization factor Kep is cho-
sen by fitting the X-ray cut-off and it is therefore the same for all
curves. As it is clear from the figure, in order to fit the radio data
the magnetic field at the shock has to be >∼ 200µG, even in the
most optimistic hypothesis of absence of any damping mecha-
nism acting in the downstream.

As a matter of fact, synchrotron emission alone can provide
an evidence of ongoing magnetic field amplification, indepen-
dently of any other evidence related to X-ray rims’ thickness or
emission variability. Such an analysis is in principle viable for
any SNR detected in the non-thermal X-rays for which it is also
possible to infer the spectral slope of the electron spectrum from
the radio data, only requiring radio and X-ray emissions to come
from the same volume and therefore from the same population
of electrons.
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~0.02 pc

Morlino & DC, 2012
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Fig. 9. Projected X-ray emission at 1 keV. The Chandra data points are
from Cassam-Chenaı̈ et al. (2007) (see their Fig. 15). The solid line
shows the projected radial profile of synchrotron emission convolved
with the Chandra point spread function (assumed to be 0.5 arcsec).

indicates the synchrotron emission alone and the solid line cor-
responds to the sum of synchrotron plus thermal bremsstrahlung.

The electron temperature in the downstream, calculated tak-
ing into account only the heating due to Coulomb collisions with
protons (Fig. 3), results in a bremsstrahlung emission peaked
around 1.2 keV which, at its maximum, contributes for about
the 6 per cent of the total X-ray continuum emission only, in
agreement with the findings of Cassam-Chenaı̈ et al. (2007).

In the same energy range there is however a non-negligible
contribution from several emission lines, which becomes more
and more important moving inwards from the FS, where the X-
ray emission is mainly non-thermal (Warren et al., 2005). A de-
tailed model of the line forest is, however, beyond the main goal
of this paper.

The projected X-ray emission profile, computed at 1 keV, is
shown in Fig. 9, where it is compared with the Chandra data in
the region that Cassam-Chenaı̈ et al. (2007) call region W. The
solid curve represents the resulting radial profile, already con-
voluted with the Chandra PSF of about 0.5 arcsec, and shows a
remarkable agreement with the data. As widely stated above, the
sharp decrease of the emission behind the FS is due to the rapid
synchrotron losses of the electrons in a magnetic field as large
as ∼ 300µG. In Fig. 9 we also plot the radial radio profile com-
puted without magnetic damping (dashed line); since the typical
damping length-scale is ∼ 3 pc, it is clear that the non-linear
Landau damping can not contribute to the determination of the
filament thickness.

It is worth stressing that the actual amplitude of the mag-
netic field we adopt is not determined to fit the X-ray rim profile,
but it is rather a secondary output, due to our modelling of the
streaming instability, of our tuning the injection efficiency and
the ISM density in order to fit the observed gamma-ray emis-
sion (see the discussion in §3). We in fact checked a posteriori
whether the corresponding profile of the synchrotron emission
(which, in shape, is also independent on Kep), were able to ac-
count for the thickness of the X-ray rims and for the radio profile
as well.
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Fig. 10. Synchrotron emission calculated by assuming constant down-
stream magnetic field equal to 100 (dotted line), 200 (dashed line) and
300 µG (solid line). The normalization of the electron spectrum is taken
to be Kep = 1.6 × 10−3 for all the curves.

4.3. Radio to X-ray fitting as a hint of magnetic field
amplification

Another very interesting property of the synchrotron emission is
that a simultaneous fit of both radio and X-ray data may provide
a downstream magnetic field estimate independent of the one
deduced by the rims’ thickness.

In fact, assuming Bohm diffusion, the position of the cut-off
frequency observed in the X-ray band turns out to be indepen-
dent of the magnetic field strength, actually depending on the
shock velocity only.

On the other hand, if the magnetic field is large enough to
make synchrotron losses dominate on ICS and adiabatic ones,
the total X-ray flux in the cut-off region depends only on the
electron density, in turn fixing the value of Kep independently
of the magnetic field strength. Moreover, radio data suggest the
slope of the electron spectrum to be equal to 2.2 at low energies,
namely below Eroll ≃ 200 GeV. Above this energy the spectral
slope has in fact to be 3.2 up to the cut-off determined by setting
the acceleration time equal to the loss time, as discussed in §2.5.

In Fig. 10 we plot the synchrotron emission from the down-
stream, assuming a given magnetic field at the shock and ne-
glecting all the effects induced by damping and adiabatic expan-
sion. The three curves correspond to different values of B2 =
100, 200 and 300µG, while the normalization factor Kep is cho-
sen by fitting the X-ray cut-off and it is therefore the same for all
curves. As it is clear from the figure, in order to fit the radio data
the magnetic field at the shock has to be >∼ 200µG, even in the
most optimistic hypothesis of absence of any damping mecha-
nism acting in the downstream.

As a matter of fact, synchrotron emission alone can provide
an evidence of ongoing magnetic field amplification, indepen-
dently of any other evidence related to X-ray rims’ thickness or
emission variability. Such an analysis is in principle viable for
any SNR detected in the non-thermal X-rays for which it is also
possible to infer the spectral slope of the electron spectrum from
the radio data, only requiring radio and X-ray emissions to come
from the same volume and therefore from the same population
of electrons.
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Conclusions?

Supernova Remnants

Have the right energetics


Diffusive shock acceleration produces power-laws


B amplification may help reaching the knee

9

Is acceleration at shocks efficient?


How do CRs amplify the magnetic field? 


When is acceleration efficient?


How are ions and electrons injected?

BUT
SNR G1.9+0.3



Collisionless shocks
Mediated by collective electromagnetic interactions


Sources of non-thermal particles and emission


Reproducible in laboratory
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Acceleration from first principles
Full particle in cell approach           
(…, Spitkovsky 2008, Niemiec+2008, Stroman+2009, 
Riquelme & Spitkovsky 2010, Sironi & Spitkovsky 2011, 
Park+2012,2015, Niemiec+2012, Guo+2014, DC+15…)


Define electromagnetic field on a grid


Move particles via Lorentz force


Evolve fields via Maxwell equations


Computationally very challenging!


Hybrid approach:                                      
Fluid electrons - Kinetic protons                                
(Winske & Omidi; Lipatov 2002; Giacalone et al.; Gargaté 
& Spitkovsky 2012, DC & Spitkovsky 2013-2015,…)


massless electrons for more 
macroscopical time/length scales
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 dHybrid code (Gargaté et al, 2007)

Hybrid simulations of collisionless shocks
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Shock propagation


Initial B field



Spectrum evolution

First-order Fermi 
acceleration: 

f(p)∝p-4  

4πp2f(p)dp=f(E)dE


!

f(E)∝E-2 (relativ.) 

f(E)∝E-1.5 (non rel.)

13DC & Spitkovsky, 2014a

85% Energy
Maxwellian

Non-thermal Tail

15% Energy

Downstream Spectrum



Filamentation instability

14DC & Spitkovsky, 2013



Uchiyama et al 2007

SNR RX J1713.7-3946 

Tycho 

Eriksen et al., 2011

Knots and filaments
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Knots δB/B～100


Radial filaments



3D simulations of a parallel shock

16

DC & 

Spitkovsky, 


2014a



DC & Spitkovsky, 2014
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Figure 12. Post-shock particle spectra at t = 200ω−1
c , for 3D simulations of M = 6 shock, for different shock obliquities. The top three

panels correspond to ϑ = 0, 45, 80 deg, respectively. Bottom panel : integrated downstream spectrum for the three cases above, as in the
legend. The non-thermal power-law tail develops only at low-inclination shocks, while at quasi-perpendicular shocks ions are only heated
up by a factor of a few in energy because of SDA. A color figure is available in the online journal.

3D simulations
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Simulations of ion acceleration at shocks: DSA efficiency 17

ϑ = 0deg

Bz/B0

ϑ = 45deg

Bz/B0

ϑ = 80deg

Bz/B0

Figure 13. Self-generated component of the magnetic field, Bz , in units of the initial field B0, which lies in the xy-plane; the three panels
correspond to t = 200ω−1

c for different 3D simulations (section 8) with inclinations ϑ = 0, 45, 80 deg (top to bottom). The iso-volume
rendering shows 10 levels of −1 ≤ Bz ≤ 1, with the respective color code in the legends. The shock position is marked by a plane of
enhanced magnetic field, around x = 600c/ωp. The amount of magnetic field amplification is very different in the parallel case, where in
the upstream there are several regions with Bz ≈ B0, and the quasi-perpendicular case, where in the upstream Bz ! 0.1B0. Also, the
magnetic field exhibits large-scale turbulent structures (both upstream and downstream) for ϑ = 0deg, while it is mainly along By for
ϑ = 80deg. The ϑ = 45 deg case shows intermediate properties. A color figure is available in the online journal.
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SN 1006: a parallel accelerator

Ion acceleration and B 
field amplification where 

the shock is parallel
19

X-ray emission:

red=thermal


white=synchrotron

– 27 –

(a) Magnetic vectors

(b) Radial and fixed angle distributions

Fig. 7.— (a) Magnetic field orientation with respect to polar angle (polar-referenced angle).

The center of the polar coordinate system used to define the polar angle (local radial direc-

tion) is marked by a yellow cross at the center of SN 1006. The color scheme of the legend

is cyclic; blue represents both 90◦ and −90◦. A positive polar-referenced angle indicates a

counter-clockwise angular difference between magnetic vectors displayed in Fig. 3 and the

polar angle. (b) Magnetic field orientation with respect to the Galactic Plane and polar

angle. Red pixels are for vectors at a fixed angle of 60◦ (the direction of the Galactic Plane),

while green indicates vectors that are locally radial. In both cases, a tolerance of ±14◦ is

– 24 –

Fig. 4.— Fractional polarization p of SN 1006 at 1.4 GHz. The resolution is 10 arcsecs. The

color scale is shown at the right. Only pixels where p was at least twice its error were kept.

Reynoso+2013

Polarization:

red=turbulent

blue=ordered
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Fig. 6. Spatially integrated spectral energy distribution of Tycho. The curves show synchrotron emission, thermal electron bremsstrahlung and pion
decay as calculated within our model (see text for details). The experimental data are, respectivley: radio from Reynolds & Ellison (1992); X-rays
from Suzaku (courtesy of Toru Tamagawa) , GeV gamma-rays from Fermi-LAT (Giordano et al., 2011) and TeV gamma-rays from VERITAS
(Acciari et al., 2011). Both Fermi-LAT and VERITAS data include only statistical error at 1 σ.

spherical symmetry, which is somehow expected just because
the northeastern region is brighter than the rest of the remnant.

Another subtle but interesting difference is that the emis-
sion peaks slightly more inwards than in our model; as a con-
sequence, also the emission detected in the region 0.6 <∼ r/Rsh <∼
0.8 is found to be a bit larger than the theoretical prediction.
This difference might have different explanations. The most ob-
vious, and already mentioned, is the possible deviation from the
spherical symmetry. Another possibility is given by placing the
CD in a different position: if one assumed the CD to be located
closer to the center (i.e. if one took the CD/FS ratio to be a few
per cent smaller), the theoretical prediction would nicely fit the
data. However, we can not forget that this explanation would be
at odds with the findings of Warren et al. (2005), who estimated
the position of the CD to be more towards the forward shock,
namely around 0.93Rsh.

A final comment on the radio profile concerns the effects of
the non-linear Landau damping in the determination of the mag-
netic field relevant for the synchrotron emission. If we neglected
the damping, the magnetic field strength in the downstream (dot-
ted line in Fig. 5) would lead to a total radio flux larger by a fac-
tor 50 per cent or more with respect to the data, even if the radial
radio profile would retain a rather similar shape.
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Fig. 8. X-ray emission due to synchrotron (dashed line) and to syn-
chrotron plus thermal bremsstrahlung (solid line). Data from the Suzaku
telescope (courtesy of Toru Tamagawa).

4.2. X-ray emission

As it is clear from Fig. 6, the synchrotron emission spans from
the radio to the X-ray band, where it sums up with the emission
due to thermal bremsstrahlung.

The best-fitting to the X-ray continuum observed by Suzaku
data is illustrated in greater detail in Fig. 8, where the dashed line
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Fig. 11. Gamma-ray emission observed by Fermi-LAT and by VERITAS compared with spectral energy distribution produced by pion decay (dot-
dashed line), relativistic bremsstrahlung (dot-dot-dashed) and ICS computed for three different photon fields: CMB (dashed), Galactic background
(dotted) and IR photons produced by local warm dust (solid). The thick solid line is the sum of all the contributions. Both Fermi-LAT and
VERITAS data points include only statistical errors at 1σ. For VERITAS data the systematic error is found to be ∼ 30% (Acciari et al., 2011),
while for Fermi-LAT the systematic uncertainties are comparable or even larger than the statistical error especially for the lowest energy bins due
to difficulties in evaluating the galactic background (see Fig. 3 in Giordano et al., 2011, and the related discussion).

background, we are left with ICS on the IR background due to
local dust as the only viable candidate. However, as predicted
by standard ICS theory and as showed in Fig. 11, the expected
photon spectrum below the cut-off is typically flatter than par-
ent electrons’ one, and more precisely is ∝ ν−1.6 for an electron
spectrum ∝ E−2.2, clearly at odds with Fermi-LAT data in the
GeV range.

Another point worth noticing is that the ICS on the CMB
radiation is sensitive to the steepening of the total electron spec-
trum above ∼100 GeV (Fig. 4) due to the synchrotron losses
particles undergo while being advected downstream, while for
the ICS on the IR+optical background the onset of the Klein-
Nishina regime (above Ee ≈ 7 TeV for photons of 1 eV) does
not allow us to probe significantly the steep region of the elec-
tron spectrum.

In other words, ICS on the CMB radiation is too low and
cannot be boosted by invoking a larger electron density, while
ICS on IR and/or optical background, which might as well be
locally enhanced with respect to the mean Galactic value, cannot
provide a spectral slope in agreement with both Fermi-LAT and
VERITAS data.

We are therefore forced to conclude that the present multi-
wavelength analysis of Tycho’s emission represents the best ev-

idence of the fact that SNRs do accelerate protons, at least up to
energies of about 500 TeV. The proton acceleration efficiency is
found to be ∼ 0.06ρ0V2sh, corresponding to converting in CRs
a fraction of about 12 per cent of the kinetic energy density
1
2ρ0V

3
sh. As estimated for instance in §3 of the review by Hillas

(2005), such a value is consistent with the hypothesis that SNRs
are the sources of Galactic CRs, provided that the residence time
in the Milky Way scales with ∼ E−1/3.

It is important to remember that the actual CRs produced by
a single SNR is given by the convolution over time of different
contributions with non trivial spectra, and namely the flux of
particle escaping the remnant from upstream during the Sedov-
Taylor stages and the bulk of particles released in the ISM at the
SNR’s death (Caprioli, Blasi & Amato, 2009; Caprioli, Amato
& Blasi, 2010a). In this respect, the instantaneous spectrum of
accelerated particles in Tycho, which is inferred to be as steep
as ∝ E−2.2, provides a hint of the fact that SNRs can indeed
produce rather steep CR spectra as required to account for the
∝ E−2.7 diffuse spectrum of Galactic CRs (Caprioli, 2011b).
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is introduced; 5) the ICS of accelerated electrons is calculated
considering as target photons non only the cosmic microwave
background (CMB) radiation, but also the Galactic background
and, more importantly, the IR photons produced by the local
warm dust.

The inclusion of the dynamical reaction of the field reduces
the compressibility of the plasma and affects the prediction for
the shock compression factor (Caprioli et al., 2009). A cru-
cial ingredient is the velocity of the scattering centers, which is
generally neglected with respect to the shock speed, but could
be significantly enhanced when the magnetic field is ampli-
fied (Vladimirov, Ellison & Bykov, 2006; Caprioli et al., 2009;
Zirakasvhili & Ptuskin, 2008). When this occurs, the total com-
pression factor felt by accelerated particles may be appreciably
reduced and, in turn, the spectra of accelerated particles may be
considerably softer.

It is worth remembering that some observational features,
especially the radio emission, are strongly affected by the past
history of the remnant, hence any reliable calculation has to
take into account also the SNR evolution. In this paper we use
a stationary version of NLDSA theory, but we couple this the-
ory to the hydrodynamical evolution of the remnant provided
by Truelove & Mc Kee (1999). We divide the SNR evolution
in several time steps and we assume that for each time step the
stationary theory can be applied, like has been done in Caprioli,
Amato & Blasi (2010a). However, as showed by Caprioli et al.
(2010), stationary models and time-dependent approaches return
very similar CR spectra for non-relativistic shocks.

We compare the results of our kinetic model with the multi-
wavelength integrated spectrum of Tycho from the radio to the
TeV range, and also with the radial profile of X-ray and radio
emissions. Our conclusion is that existing data of Tycho’s SNR
are consistent with a moderately efficient acceleration of CR nu-
clei: at the present age we infer that a fraction around 12 per cent
of the total kinetic energy has been converted in CRs. Such an
efficiency also implies an amplified magnetic field of ∼ 300µG,
perfectly consistent with the measured X-ray rim thickness. In
addition, such a strong magnetic field enhances the velocity of
the scattering centers, finally reducing the effective compression
factor felt by accelerated particles, whose spectrum turns out to
be as steep as ∼ E−2.2. The most important consequence of this
fact is that this spectrum allows us to fit the observed gamma-ray
emission, from the GeV to the TeV band, as due to neutral pion
decay. Moreover, in this framework it is not possible to explain
the TeV emission as due to ICS without violating many other
observational constraints.

The paper is organized as follows: in §2 we summarize the
details of our model for non-linear particle acceleration and our
treatment of the SNR evolution. In §3 we outline the macro-
scopic properties of Tycho’s SNR, in order to fix the free param-
eters of ourmodel, while in §4 we widely discuss the comparison
between data and our findings for the multi-wavelength spec-
trum, also by analyzing each different energy band separately.
We conclude in §5.

2. Description of the model
2.1. Remnant evolution

We model the evolution of Tycho by following the analytic pre-
scriptions given by Truelove & Mc Kee (1999). More precisely,
we consider a SN explosion energy ESN = 1051 erg and one
solar mass in the ejecta, whose structure function is taken as
∝ (v/ve j)−7 (see §3.2 and §9 in Truelove &Mc Kee, 1999). Such

Fig. 1. Radio image of the Tycho’s remnant at 1.5 GHz in linear
color scale. Image credit: NRAO/VLA Archive Survey, (c) 2005-2007
AUI/NRAO.
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Fig. 2. Time evolution of shock radius Rsh, shock velocity Vsh, magnetic
field immediately behind the shock B2 and CR acceleration efficiency
ξcr = Pcr/ρ0V2sh.

a set of parameters has been showed to be suitable for describ-
ing the evolution of the FS position and velocity for a type Ia
SNR: the parametrization given in table 7 of Truelove &Mc Kee
(1999) in fact differs from the exact numerical solution of about
3 per cent typically, and of 7 per cent at most. Such a solution,
which does not include explicitly the possible role of the CR
pressure in the SNR evolution, is still expect to hold for mod-
erately small acceleration efficiencies (below about 10 per
cent). We checked a posteriori that the efficiency needed to
fit observations does not require a more complex treatment
of the shock evolution during the ejecta-dominated stage.

The circumstellar medium is taken as homogeneous with
proton number density n0 = 0.3 cm−3 and temperature T0 =
104 K. Following the conclusion of Tian & Leahy (2011), we
assume that the remnant expands into the uniform interstellar
medium (ISM) without interacting with any MC. With these pa-
rameters, the reference value for the beginning of the Sedov-
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Fig. 6. Spatially integrated spectral energy distribution of Tycho. The curves show synchrotron emission, thermal electron bremsstrahlung and pion
decay as calculated within our model (see text for details). The experimental data are, respectively: radio from Reynolds & Ellison (1992); X-rays
from Suzaku (courtesy of Toru Tamagawa), GeV gamma-rays from Fermi-LAT (Giordano et al. 2012) and TeV gamma-rays from VERITAS
(Acciari et al. 2011). Both Fermi-LAT and VERITAS data include only statistical error at 1σ.
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projected radial profile computed from our model using Eq. (16), while
the thick solid line corresponds to the same profile convoluted with a
Gaussian with a PSF of 15 arcsec.

account (Fig. 3), results in a bremsstrahlung emission peaked
around 1.2 keV, which, at its maximum, contributes only about
6% of the total X-ray continuum emission only, in agreement
with the findings of Cassam-Chenaï et al. (2007). In the same
energy range, there is however a non-negligible contribution
from several emission lines, which increases their intensity mov-
ing inwards from the FS, where the X-ray emission is mainly
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Fig. 8. X-ray emission due to synchrotron (dashed line) and to syn-
chrotron plus thermal bremsstrahlung (solid line). Data from the Suzaku
telescope (courtesy of Toru Tamagawa).

nonthermal (Warren et al. 2005). A detailed model of the line
forest is, however, beyond the main goal of this paper.

The projected X-ray emission profile, computed at 1 keV, is
shown in Fig. 9, where it is compared with the Chandra data in
the region that Cassam-Chenaï et al. (2007) call region W. The
resulting radial profile, already convoluted with the Chandra
PSF of about 0.5 arcsec, shows a remarkable agreement with
the data. As widely stated above, the sharp decrease in the emis-
sion behind the FS is due to the rapid synchrotron losses of the
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Fig. 9. Projected X-ray emission at 1 keV. The Chandra data points
are from (Cassam-Chenaï et al. 2007, see their Fig. 15). The solid line
shows the projected radial profile of synchrotron emission convolved
with the Chandra point spread function (assumed to be 0.5 arcsec).

electrons in a magnetic field as large as ∼300 µG. In Fig. 9
we also plot the radial radio profile computed without magnetic
damping; since the typical damping length-scale is ∼3 pc, it is
clear that the nonlinear Landau damping cannot contribute to the
determination of the filament thickness.

It is worth stressing that the actual amplitude of the magnetic
field we adopt is not determined to fit the X-ray rim profile, but it
is rather a secondary output, due to our modeling of the stream-
ing instability, of our tuning the injection efficiency and the ISM
density in order to fit the observed gamma-ray emission (see the
discussion in Sect. 3). We in fact checked a posteriori whether
the corresponding profile of the synchrotron emission (which, in
shape, is also independent on Kep), were able to account for the
thickness of the X-ray rims and for the radio profile as well.

4.3. Radio to X-ray fitting as a hint of magnetic field
amplification

Another very interesting property of the synchrotron emission is
that a simultaneous fit of both radio and X-ray data may provide
a downstream magnetic field estimate independent of the one de-
duced by the rims’ thickness. In fact, assuming Bohm diffusion,
the position of the cut-off frequency observed in the X-ray band
turns out to be independent of the magnetic field strength, and
actually depends on the shock velocity alone.

On the other hand, if the magnetic field is strong enough to
make synchrotron losses dominate on ICS and adiabatic ones,
the total X-ray flux in the cut-off region only depends on the
electron density, in turn fixing the value of Kep independently
of the magnetic field strength. Moreover, radio data suggest the
slope of the electron spectrum to be equal to 2.2 at low energies,
namely below Eroll ≃ 200 GeV. Above this energy the spectral
slope in fact has to be 3.2 up to the cut-off determined by set-
ting the acceleration time equal to the loss time, as discussed in
Sect. 2.5.

In Fig. 10 we plot the synchrotron emission from the down-
stream, assuming a given magnetic field at the shock and
neglecting all the effects induced by damping and adiabatic
expansion. The three curves correspond to different values of
B2 = 100, 200 and 300 µG, while the normalization factor Kep is
chosen by fitting the X-ray cut-off, and it is therefore the same
for all curves. As it is clear from the figure, in order to fit the
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Fig. 10. Synchrotron emission calculated by assuming constant down-
stream magnetic field equal to 100 (dotted line), 200 (dashed line), and
300 µG (solid line). The normalization of the electron spectrum is taken
to be Kep = 1.6 × 10−3 for all the curves.

radio data the magnetic field at the shock has to be !200 µG,
even in the most optimistic hypothesis of absence of any damp-
ing mechanism acting in the downstream.

As a matter of fact, synchrotron emission alone can provide
evidence of ongoing magnetic field amplification, independently
of any other evidence related to X-ray rims’ thickness or emis-
sion variability. Such an analysis is in principle viable for any
SNR detected in the nonthermal X-rays for which it is also pos-
sible to infer the spectral slope of the electron spectrum from
the radio data, only requiring radio and X-ray emissions to come
from the same volume and therefore from the same population
of electrons.

4.4. Gamma-ray emission

The most intriguing aspect of Tycho’s broadband spectrum is
its gamma-ray emission, which has been detected before in the
TeV band by VERITAS (Acciari et al. 2011) and then in the
GeV band by Fermi-LAT, too (Giordano et al. 2012). Gamma-
ray emission from SNRs has been considered for long time a
possible evidence of hadron acceleration in this class of objects
(Drury et al. 1994), even if there are two distinct physical mech-
anisms that may be responsible for such an emission; in the so-
called hadronic scenario, the gamma-rays are produced by the
decay of neutral pions produced in nuclear collisions between
CRs and the background gas, while in the so-called leptonic sce-
nario the emission is due to ICS or relativistic bremsstrahlung
of relativistic electrons.

We show here, with unprecedented clarity for an SNR, that
the gamma-ray emission detected from Tycho cannot have a lep-
tonic origin, but has to come from accelerated hadrons, instead.
This fact, along with the VERITAS detection of ∼10 TeV pho-
tons and the lack of evidence of a cut-off in the spectrum, implies
that hadrons have to be accelerated up to energies as high as a
few hundred TeV.

In particular, the proton spectrum we obtain shows a cut-off
around pmax = 470 TeV/c (see Fig. 4). In this respect, Tycho
could be considered as a half-PeVatron at least, because there is
no evidence of a cut-off in VERITAS data. The age-old problem
of detecting SNRs emitting photons with energies over a few
hundred TeV (i.e., responsible for the acceleration of particles
up to the knee observed in the spectrum of diffuse Galactic CRs)
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Only two free parameters: injection efficiency and electron/proton ratio
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