

X-ray spectroscopy of obscured AGN: NuSTAR results and ASTRO-H perspectives featuring: "The Markarian 3 case"

Matteo Guainazzi ASTRO-H Science Operation Team (SOT) - ISAS/JAXA ASTRO-H ESA Science Operation Center (SOC) - ESA/ESAC

Outline

Basic question of this talk: which quantitative constraints can we put on the circum-nuclear gas and dust in AGN?

- 1. Constraints from IR/optical
- 2. Constraints from X-ray spectroscopy and spectral variability
- 3. A showcase: a recent monitoring campaign on Markarian 3
- 4. What do we need to make a step forward: modelling and ASTRO-H

Outline

Basic question of this talk: which quantitative constraints can we put on the circum-nuclear gas and dust in AGN?

- 1. Constraints from IR/optical
- 2. Constraints from X-ray spectroscopy and spectral variability
- 3. A showcase: a recent monitoring campaign on Markarian 3
- 4. What do we need to make a step forward: modelling and ASTRO-H

AGN Spectral Energy Distribution

Ho et al., 1995, ApJ

Elvis et al., 2012, ApJ, 759. 6; Detmers 2011, A&A, 534, A37

AGN Spectral Energy Distribution

Ho et al., 1995, ApJ

Elvis et al., 2012, ApJ, 759. 6; Detmers 2011, A&A, 534, A37

AGN Spectral Energy Distribution

Ho et al., 1995, ApJ

Elvis et al., 2012, ApJ, 759. 6; Detmers 2011, A&A, 534, A37

Reverberation+(IR) interferometry

Burtscher et al., 2015, A&A, 558, A8149

Tremaine et al., 2002, ApJ, 574, 740, Sazonov et al., 2007, A&A, 462, 57

However, most of the gas in the AGN environment in within the dust sublimation radius.

$$\langle R_{\rm sub,C} \rangle \simeq 0.5 L_{46}^{1/2} \left[\frac{1800}{T_{\rm sub}} \right]^{2.0} f(\theta) \ {\rm pc}$$

Tremaine et al., 2002, ApJ, 574, 740, Sazonov et al., 2007, A&A, 462, 57

However, most of the gas in the AGN environment in within the dust sublimation radius. $\langle R_{\rm sub,C} \rangle \simeq 0.5 L_{46}^{1/2} \left[\frac{1800}{T_{\rm sub}} \right]^{2.6} f(\theta) \text{ pc}$

We need X-rays to study:

AGN innermost parsec structure

Tremaine et al., 2002, ApJ, 574, 740, Sazonov et al., 2007, A&A, 462, 57

However, most of the gas in the AGN environment in within the dust sublimation radius. $\langle R_{\rm sub,C} \rangle \simeq 0.5 L_{46}^{1/2} \left[\frac{1800}{T_{\rm sub}} \right]^{2.6} f(\theta) \text{ pc}$

We need X-rays to study:

- AGN innermost parsec structure
- AGN feeding from the host galaxy

Tremaine et al., 2002, ApJ, 574, 740, Sazonov et al., 2007, A&A, 462, 57

However, most of the gas in the AGN environment in within the dust sublimation radius. $\langle R_{\rm sub,C} \rangle \simeq 0.5 L_{46}^{1/2} \left[\frac{1800}{T_{\rm sub}} \right]^{2.6} f(\theta) \text{ pc}$

We need X-rays to study:

- AGN innermost parsec structure
- AGN feeding from the host galaxy
- AGN feed-back to the host galaxy

Tremaine et al., 2002, ApJ, 574, 740, Sazonov et al., 2007, A&A, 462, 57

However, most of the gas in the AGN environment in within the dust sublimation radius. $\langle R_{\rm sub,C} \rangle \simeq 0.5 L_{46}^{1/2} \left[\frac{1800}{T_{\rm sub}} \right]^{2.6} f(\theta) \, \mathrm{pc}$

We need X-rays to study:

- AGN innermost parsec structure
- AGN feeding from the host galaxy
- AGN feed-back to the host galaxy

Synthesis models of the Cosmic X-ray Background

Outline

Basic question of this talk: which quantitative constraints can we put on the circum-nuclear gas and dust in AGN?

1. Constraints from IR/optical

- 2. Constraints from X-ray spectroscopy and spectral variability
- 3. A showcase: a recent monitoring campaign on Markarian 3
- 4. What do we need to make a step forward: modelling and ASTRO-H

X-ray spectroscopy of obscured AGN: a primer

Yaqoob et al., 2015, arXiv:1508.07685

Geometry matters

Energy (keV)

Occultation by "cold" clouds

Risaliti et al., 2007, ApJ, 659, L111

Assuming a cloud in: a) Keplerian motion; b) virial turbulent motion; c) ionization equilibrium with the AGN:

- Source Linear size D~10¹³⁻¹⁴ cm
- Distance from the AGN d~10⁻¹ pc

Occultation event statistics

Markowitz et al,. 2014, MNRAS, 439, 1403

8 AGN with occultation events in the RXTE archive (~270 years in the AGN life)

BLR clouds IR continuum Dust (0.4-1 x sublimation radius, R_d) X-ray clouds

Bonus: the "true" column density distribution

Lansbury et al., 2015, ApJ, 809, 115; Civano et al., 2015, ApJ, 808, 185

Sample of a z<0.5 SDSS-selected QSOs

Bonus: the "true" column density distribution

Lansbury et al., 2015, ApJ, 809, 115; Civano et al., 2015, ApJ, 808, 185

Sample of a z<0.5 SDSS-selected QSOs

Luminosity-dependent covering fraction

Brightman et al., 2015, ApJ, 805, 41

Outline

Basic question of this talk: which quantitative constraints can we put on the circum-nuclear gas and dust in AGN?

- 1. Constraints from IR/optical
- 2. Constraints from X-ray spectroscopy and spectral variability
- 3. A showcase: a recent monitoring campaign on Markarian 3
- 4. What do we need to make a step forward: modelling and ASTRO-H

Mkn3 2014-2015 NuSTAR campaign

Guainazzi et al., in preparation

<u>9 observations</u>: 5 in autumn 2014 (7, 14 Sep, 1, 9, 23 Oct), 4 in spring 2015 (19, 22 Mar, 5, 8 Apr). NuSTAR + Suzaku or XMM-Newton

The spectra of Markarian 3 above ~3 keV show variability on all time-scales down to ~2 days

Absorber column density variability

Absorber column density variability

Absorber column density variability

Mkn3: X-ray vs. IR absorber/reprocessor

Guainazzi et al., in preparation; IR results from Sales et al., 2014. A&A, 441. 630

	X-rays (gas+dust)	IR (dust)
N (10	2.2±0.9	0.5±0.3
N	13-38	9±3
θ	66.0	50
θ	68.9	61

Still poorly known:

- X-ray cloud size/volume filling factor $(R_{cloud} \leq 2000 R_{s}/R^{2}_{corona,10Rs})$
- X-ray cloud density $[n \ge 10^5 \text{ cm}^{-3} (\text{R}^2_{\text{corona,10Rs}})]$
- radial profile of gas and dust (no idea)

IR analysis suggests that the torus extends up to ~7-8 pc

Comparison of Compton-scattering results

Guainazzi et al., in preparation

	Ikeda ("decoupled")	mytorus ("decoupled")	torus ("coupled")
N (10	2.2±0.9	0.12±0.01	Ν
N (10	0.86-1.08	0.74-0.93	0.65-0.93
θ	66.0±0.4	60 (fixed)	58.3±1.8
θ	68.0±1.5	N/A	>83

<u>Good news</u>: N_{H.los} (*i.e.* Γ , L_X) does not strongly depend on the details of the torus model <u>Bad news</u>: comparison of torus models is difficult due to the incongruent assumptions

Structure of the absorber

Ennering et al., 1992, ApJ, 385, 460

Structure of the absorber

Ennering et al., 1992, ApJ, 385, 460

A possible structure of the torus in Mkn3

A possible structure of the torus in Mkn3

Markarian 3 HETG spectrum (770 ks)

Failed winds and the origin of BLRs

Czerny & Hryniewicz, 2011, A&A, 525, L8

Conclusions

Outline

Basic question of this talk: which quantitative constraints can we put on the circum-nuclear gas and dust in AGN?

- 1. Constraints from IR/optical
- 2. Constraints from X-ray spectroscopy and spectral variability
- 3. A showcase: a recent monitoring campaign on Markarian 3
- 4. What do we need to make a step forward: modelling and ASTRO-H

Uniqueness of ASTRO-H

Courtesy T.Takahashi, JAXA

(Takahashi, 2013, MmSAI, 84, 776)

Parameter	Hard X-ray	Soft X-ray	Soft X-ray	Soft γ-ray
	Imager	Spectrometer	Imager	Detector
	(HXI)	(SXS)	(SXI)	(SGD)
Detector	Si/CdTe	micro	X-ray	Si/CdTe
technology	cross-strips	calorimeter	CCD	Compton Camera
Focal length	12 m	5.6 m	5.6 m	-
Effective area	300 cm ² @30 keV	210 cm ² @6 keV	360 cm ² @6 keV	$>20 \text{ cm}^2@100 \text{ keV}$
		160 cm ² @ 1 keV		Compton Mode
Energy range	5 –80 keV	0.3 – 12 keV	0.5 – 12 keV	40 – 600 keV
Energy	2 keV	< 7 eV	150 eV	4 keV
resolution	(@60 keV)		(@6 keV)	(@40 keV)
(FWHM)				
Angular	<1.7 arcmin	<1.3 arcmin	<1.3 arcmin	-
resolution				
Effective	~ 9 × 9	\sim 3 \times 3	$\sim 35 \times 35$	$0.6 \times 0.6 \text{ deg}^2$
Field of View	arcmin ²	arcmin ²	arcmin ²	(< 150 keV)
Time resolution	several 10 µs	several 10 µs	4 sec	several 10 µs
Operating	-20°C	50 mK	−120°C	-20°C
temperature				

(Takahashi, 2013, MmSAI, 84, 776)

Parameter	Hard X-ray	Soft X-ray	Soft X-ray	Soft γ-ray
	Imager	Spectrometer	Imager	Detector
	(HXI)	(SXS)	(SXI)	(SGD)
Detector	Si/CdTe	micro	X-ray	Si/CdTe
technology	cross-strips	calorimeter	CCD	Compton Camera
Focal length	12 m	5.6 m	5.6 m	-
Effective area	300 cm ² @30 keV	210 cm ² @6 keV	360 cm ² @6 keV	$>20 \text{ cm}^2@100 \text{ keV}$
		160 cm ² @ 1 keV		Compton Mode
Energy range	5 –80 keV	0.3 – 12 keV	0.5 – 12 keV	40 – 600 keV
Energy	2 keV	< 7 eV	150 eV	4 keV
resolution	(@60 keV)		(@6 keV)	(@40 keV)
(FWHM)				
Angular	<1.7 arcmin	<1.3 arcmin	<1.3 arcmin	-
resolution				
Effective	~ 9 × 9	$\sim 3 \times 3$	$\sim 35 \times 35$	$0.6 \times 0.6 \text{ deg}^2$
Field of View	arcmin ²	arcmin ²	arcmin ²	(< 150 keV)
Time resolution	several 10 μ s	several 10 μ s	4 sec	several 10 µs
Operating	-20°C	50 mK	−120°C	−20°C
temperature				

High-resolution spectroscopy

(Takahashi, 2013, MmSAI, 84, 776)

Parameter	Hard X-ray	Soft X-ray	Soft X-ray	Soft γ-ray
	Imager	Spectrometer	Imager	Detector
	(HXI)	(SXS)	(SXI)	(SGD)
Detector	Si/CdTe	micro	X-ray	Si/CdTe
technology	cross-strips	calorimeter	CCD	Compton Camera
Focal length	12 m	5.6 m	5.6 m	-
Effective area	300 cm ² @30 keV	210 cm ² @6 keV	360 cm ² @6 keV	$>20 \text{ cm}^2@100 \text{ keV}$
		160 cm ² @ 1 keV		Compton Mode
Energy range	5 –80 keV	0.3 – 12 keV	0.5 – 12 keV	40 – 600 keV
Energy	2 keV	< 7 eV	150 eV	4 keV
resolution	(@60 keV)		(@6 keV)	(@40 keV)
(FWHM)				
Angular	<1.7 arcmin	<1.3 arcmin	<1.3 arcmin	-
resolution				
Effective	$\sim 9 \times 9$	$\sim 3 \times 3$	$\sim 35 \times 35$	$0.6 \times 0.6 deg^2$
Field of View	arcmin ²	arcmin ²	arcmin ²	(< 150 keV)
Time resolution	several 10 μ s	several 10 μ s	4 sec	several 10 µs
Operating	−20°C	50 mK	−120°C	−20°C
temperature				

High-resolution spectroscopy Imaging up to 80 keV

(Takahashi, 2013, MmSAI, 84, 776)

Parameter	Hard X-ray	Soft X-ray	Soft X-ray	Soft γ-ray
	Imager	Spectrometer	Imager	Detector
	(HXI)	(SXS)	(SXI)	(SGD)
Detector	Si/CdTe	micro	X-ray	Si/CdTe
technology	cross-strips	calorimeter	CCD	Compton Camera
Focal length	12 m	5.6 m	5.6 m	-
Effective area	300 cm ² @30 keV	210 cm ² @6 keV	360 cm ² @6 keV	$>20 \text{ cm}^2@100 \text{ keV}$
		160 cm ² @ 1 keV		Compton Mode
Energy range	5 –80 keV	0.3 – 12 keV	0.5 – 12 keV	40 – 600 keV
Energy	2 keV	< 7 eV	150 eV	4 keV
resolution	(@60 keV)		(@6 keV)	(@40 keV)
(FWHM)				
Angular	<1.7 arcmin	<1.3 arcmin	<1.3 arcmin	-
resolution				
Effective	$\sim 9 \times 9$	$\sim 3 \times 3$	$\sim 35 \times 35$	$0.6 \times 0.6 deg^2$
Field of View	arcmin ²	arcmin ²	arcmin ²	(< 150 keV)
Time resolution	several 10 μ s	several 10 μ s	4 sec	several 10 µs
Operating	−20°C	50 mK	−120°C	-20°C
temperature				

High-resolution spectroscopy

Imaging up to 80 keV

Wide band, high sensitivity

SXS performance energy performance

2000

1500

1000

Ag K_α

Courtesy S.Porter and SXS Team

Ag K_{b1}

Å

24000

Ag $K_{\beta 2}$

26000

- Resolution ≤ 7 eV
- Line Spread Function almost perfectly Gaussian
- Energy calibration up to ~25 keV
- On-board active gain control 1-2 eV

Spectroscopy of optically thick nuclear gas

Reynolds et al., 2014, arXiv:1412.1177

One of the missing observables is the radial the velocity field radial profile of the Compton-scattering gas.

Measurements of the profile of the K_{α} iron line with the SXS!

simulation of 100 ks on NGC4388 (very similar AGN to Markarian 3)