The Origin of the Oosterhoff Dichotomy & the Double R ed Clump in the Halo & Bulge of the Milky Way

Young-Wook Lee, Sohee Jang, Seok-Joo Joo, & Chul Chung Yonsei University, Seoul, South Korea

The Oosterhoff (1939) Period Groups

According to mean period of type ab RR Lyrae variables in GCs

Oo group I: $<P_{ab}> \sim 0.55$ day, metal-rich

Oo group II: $\langle P_{ab} \rangle \sim 0.65$ day, metal-poor

Oo group III: $\langle P_{ab} \rangle \sim 0.70$ day, very metal-rich

One of the long-standing problems in m odern astronomy! (~370 papers, including Sandage 2010)

Pulsation theory (e.g., van Albada & Baker 1971):

 $P - Mean density relation, P_{RR} = f(L, M, T_{eff})$

 $Log P_f = 0.84 log L - 0.68 log M - 3.48 log T_{eff} + 11.497$,

where P is in days and L and M are in solar units

Suggested origin for the Oosterhoff dichotomy (among ~370 papers)

van Albada & Baker 1973: "Hysteresis effect" \rightarrow T_{eff} difference

Sandage 1981: "P-shift" at fixed $T_{eff} \rightarrow L$ difference

Lee, Demarque, & Zinn 1990: L difference \rightarrow Post-ZAHB evolution from blue HB

Yoon & Lee 2002: Metal-poor Oo II GCs were accreted from a satellite galaxy

Discovery of Multiple Stellar Populations in GCs

by IMAGB, FRMS, (SNe)

Synthetic HB models with multiple populations

(Jang, Lee+2014; Jang & Lee 2015; Lee+2015)

• Stellar Libraries & Synthetic HB

- Lee, Demarque, & Zinn 1990, 94; Joo & Lee 2013
- Yonsei-Yale (Y²) isochrones & HB evolutionary tracks with He & CNO enhancements

[Fe/H]	-3.51, -2.51, -1.90, -1.51, -0.90, -0.65, -0.49, -0.17, 0.17, 0.39, 0.56
[a/Fe]	0.0, 0.3, 0.6
Y	0.23, 0.28, 0.33, 0.38, 0.43
[N/Fe] ([CNO/Fe])	0.0, 0.8, 1.6 (0.21, 0.31, 0.67)

Mass-Loss on RGB

- Reimers' mass-loss parameter η calibrated to the HB morphologies of inner halo GCs ($\eta \sim 0.4$)

• Stellar Pulsation

- The blue edge of the instability strip : Tuggle & Iben 1972; Bono et al. 1995
- P_{ab} and P_c : van Albada & Baker 1971; Bono et al. 1997
- Transition T_{eff} between c and ab type RRL: Sandage's (2006) empirical formula

Three distinct subgroups on the HB of M15

M15 (Oo II)

Buonanno+1985; Bingham+1984

3 distinct subgroups on HB: RR Lyraes, blue HB, & blue tail (extr eme BHB).

Assume that they were originated fr om 3 distinct subpopulations (G1, G 2, & G3) in this GC.

Other Oo II GCs, NGC 5466 & 4590, also show gaps between RR Lyraes & blue HB.

Placements of G1, G2, & G3 on the HB of M15

G1: Normal Blue HB ([Fe/H] = -2.2, t = 12.5 Gyr)

G2: RR Lyraes (somewhat enhanced in Helium & CNO, ~ 1 Gyr Y ounger)

G3: "Blue tail" or Extreme Blue HB (Super-He-rich)

Some evidence for He and CNO enhancements in G2:

Theory (IMAGB/FRMS): Fenner+2004; Ventura & D'Antona 2009; Karaka s 2010; Decressin+2009

Observations: Sneden+1997; Cohen et al. 2005; Alves-Brito+2012; Marino+2012, 2014; Gratton+2011, 2012, 2013; Yong+2014

→ <u>Need more observations for CNO sum</u>

Both helium and CNO enhancements play a role in increasing the period of RR Lyrae variables!

Effects of Y, Age, and Z_{CNO} on the HB of G2

Table 1. Parameters from our best-fit simulation of M15.

Population	$[\mathrm{Fe}/\mathrm{H}]^\mathrm{a}$	$\Delta Z_{ m CNO}$	Y	Age (Gyr)	Mass Loss ^b (M_{\odot})	$\langle M_{\rm HB} \rangle^{\rm c}$ (M_{\odot})	Fraction	$\Delta \log P'^{\mathrm{d}}$	$\Delta \langle P_{\rm ab} \rangle$ (day)
G1	-2.2	0	0.230	12.5	0.140	0.686	0.36	-	-
G2	-2.2	0.00026	0.245 ± 0.01	11.4 ± 0.2	0.142	0.684	0.22	0.040	0.087
G3	-2.2	0	0.327 ± 0.01	11.3 ± 0.2	0.129	0.589	0.42	-	-

 $^{a}[\alpha/\text{Fe}] = 0.3$ for G1 & G2, 0.5 for G3.

Period-Shift between Oo groups
→ "Population-Shift" within the ins tability strip (Jang & Lee 2015)
RR Lyraes produced mostly by
G1 for Oo I,
G2 for Oo II,
G3 for Oo III

When our models are extended to all metallicity regimes... **The Oosterhoff dichotomy reproduced!**

Faint

Hot

Coo

Log Teff

With decreasing metallicity, contribution from G1 & G2 ZA HBs decrease sequentially

→ Two-stage jump in <Pab> (cf. Lee & Zinn 90)

"Population-shift" effect when Δt (G1-G2) is small

Jang & Lee 2015

Double Red Clump (RC) in the MW Bulge

McWilliam & Zocalli 2010; Nataf et al. 20 10; Saito et al. 2011

Double RC in MW Bulge: Key Observations

(1) $\Delta K = \Delta I = \sim 0.5 \text{ mag}$

(2) Two RCs have ~identical mean colors

(3) Double RC = *f*([*Fe*/*H*])

Only evident among metal-rich stars, while metal-poor popula tions show only faint RC

(4) Double RC = f(b, l)

Separation vanishes at low latitude,

relative strength of two RCs changes with longitude

McWilliam & Zoccali 2010; Nataf et al. 2010, 2015; Saito et al. 2012; Ness et al. 2012, 2013; Uttenthaler et al. 2012; Rojas-Arriagada et al. 2014

The X-Shaped Bulge in the Milky Way

X-Shaped Bulge from bar instability: bright RC (foreground) + faint RC (background)

McWilliam & Zocalli 2010; Nataf+2010, 2015; Saito+2012; Ness, Freeman+2012, 2013; Li & Shen 2012; Uttenthaler+2012; Wegg & Gerhard 2013; Vasquez+2013; Rojas-Arriagada+2014; Gonzalez+2015... **100+ papers**

 \rightarrow Even high latitude field of the bulge has "pseudo bulge" characteristic

But this is most likely an artifact!

Discovery of Multiple Stellar Populations in GCs

by IMAGB, FRMS, (SNe)

For metal-poor GCs, Super-He-rich subpopulations are on the bluer HB

NGC 2808 Lee et al. 2005

Models & Spectroscopy:

Lee+94; D'Antona & Caloi 04, 08; Lee+05; C assisi+09; Gratton+11, 12, 13; Chung+11; Da lessandro+11; Joo & Lee 13; Kunder+13; Ja ng+14; Marino+14; Jang & Lee 15 But in metal-rich system, they are at brighter RC! Hint from Terzan 5: A metal-rich bulge GC

Metal-rich counterpart of ω Cen

→ Brighter RC is either
 6 Gyr younger (Ferraro+2009) or
 super-He-rich (D'Antona+2010; Le
 e+2015)

→ Very analogous to the double R
 C in bulge!
 But dismissed because of the color difference... (McWilliam & Zocalli 2010; Nataf et al. 2010)

Figure 2 | The two horizontal branch clumps of Terzan 5. Main panel, MAD

Multiple Population Models for the Doub le RC in Bulge

Synthetic HB models usi ng Y² evolutionary tracks

G1: normal-He $\Delta Y/\Delta Z = 2$, 12 Gyr G2: super-He-rich Y = 0.39, 10 Gyr

 Δ [Fe/H] = 0.2 dex

Explains metallicity dependence!

Lee, Joo & Chung 2015

Multiple Population Models for the Doub le RC in Bulge

- G1: normal-He $\Delta Y / \Delta Z = 2$
- G2: super-He-rich Y = 0.39
- → At solar [Fe/H], $\Delta Y/\Delta Z$ = 6 (by AGB+FRMS+SNe)
- → Could form ubiquitous ly in metal-rich syste m!
- → Chemical evolution m odel required

Lee, Joo & Chung 2015

Double RC = f(b, l)

Latitude dependence \rightarrow Bar/CB = f(b)

Longitude dependence → Tilted Bar embedded i n CB

Bar: monomodal in gray CB: bimodal Bar+CB: blue

Observed kinematics are not inconsistent with our scenario!

- Cylindrical rotation at lbl < 6 (Ness+13; Zoccali+14): low lbl is dominated by bar, CB could have absorbed angular mom entum from bar (Saha+15; Zoccali+14)
- Some ΔVr (bRC fRC) at b = -6 (Vasquez+13):
 + CB at low lbl, & bar is in streaming motion
- No ΔVr (bRC fRC) at b = -8, -10 (De Propris+11; Uttenth aler+12; Rojas-Arriagada+14): Consistent with our CB domina ted scenario at high lbl

Galactic latitude (deg)

Galactic longitude (deg

Bar

At metal-poor regime, our models can also reproduce...

Multiple population models can also reproduce... The Oosterhoff dichotomy: 76 year old problem

Double RC & two populations of RRL in bulge, & Oosterhoff dichoto my are different manifestations of the same phenomenon !!

Color

Summary & Implications

(1) Double RC in MW bulge is another manifestation of multiple populations in me tal-rich regime, rather than the distance effect (Lee et al. 2015)

 \rightarrow Gaia can confirm this!

(2) MW bar is not sufficiently buckled to form X-shaped structure
→ previous studies on the structure of the bulge (based on RC) should be re-examined

(3) Stars in CB component were provided by disrupted "building blocks" such as T erzan 5 (massive GCs)! NB. γ-ray emission from MW center best explained by MSPs pro vided by disrupted GCs (Brandt+Kocsis 2015)

(4) Early-type galaxies would be similarly prevailed by super-helium-rich population $n!! \rightarrow Impacts$ on population synthesis, such as Na enhanced gE (van Dokkum & Conroy 20 10) & UV upturn (Chung, Yoon, & Lee 2011)

(5) The same multiple population models can explain two populations of RR Lyrae variables in the bulge, and the Oosterhoff dichotomy in the halo (Jang & Lee 2015)

(6) Astronomers repeat the same mistakes: intrinsically brighter (fainter) population is often misinterpreted as a distance effect

Gonzalez et al. 2015

This longitude dependence at b = -8.5 is understood by (1) tilted bar+CB & effect of p erspective
(2) metallicity effect

Wegg+15

Gonzalez et al. 2015

Comparison of our model with observation

bulge+ foreground disk contamination

Figure 3. CMDs and brightness distribution with best-fit double clump model for two locations. Left: (l, b) = (0.27, -5.77), the $\Delta \chi^2 = 26.7$ when a second Gaussian is fit, the parameters are $(m_{\text{RC},1}, \sigma_{\text{RC},1}, N_{\text{RC},1}, m_{\text{RC},2}, \sigma_{\text{RC},2}, N_{\text{RC},2}) = (14.90, 0.18, 166.42, 15.42, 0.10, 98.51)$. Right: (l, b) = (-0.28, 5.76), the $\Delta \chi^2 = 14.4$. The parameters are: $(m_{\text{RC},1}, \sigma_{\text{RC},1}, \sigma_{\text{RC},1}, \sigma_{\text{RC},1}, \sigma_{\text{RC},1})$

Nataf+2010

The HB morphology versus metallicity diagram

"Population shift"

within the instability strip

→ P-shift

RR Lyraes are produced mostl y by G1 for M3 (Oo I), by G2 for M15 (Oo II), & by G3 for NGC 6441 (Oo III), respectively.

Metallicity

NB. Evolution effect is still importa nt for the Oo II GCs in the inner hal o (Jang & Lee 2015)

The Y² Evolutionary Tracks for HB & RC (RC = metal-rich counterpart of HB)

