Predictions for Galactic Archeology from Numerical Modeling

 $\nu = 0.375$

Ivan Minchev Leibniz-Institut für Astrophysik Potsdam (AIP)

 $\delta = -0.009 \nu = 0.425$

∆=-0.084

A=-0.08

δ=0.068 v=1.000.

 $\Omega_{p} = 1.85, \ \Omega_{p} = 0.80$ $\Omega_{p} = 1.85, \ \Omega_{q} = 0.80$ $\Omega_{p} = 1.85, \ \Omega_{p} = 0.80$

∆=-0.108

Ω_=0.80

dr

δ

Δ:

dr=-0.075

∆=-0.087

δ=0.001 v=0.500

δ=-0.032 ν=0.250 Δ=-0.076

 $H \approx I_1^2 + I_1 \delta - \varepsilon I_1^{1/2} \cos \phi - \beta I_1^{1/2} \cos [\phi + v t + \gamma]$

Leibniz-Institut für Astrophysik Potsdam

2/3 of all disk galaxies have central bars

What we think our Galaxy looks like

Due to our position in the disk, the disk morphology is still largely unknown

N-body simulation of a galactic disk

67

Spiral arms and a bar develop, similar to what we think we have in our Galaxy

Hard to infer the Milky Way morphology from our position in the disk

Like our view in the Milky Way disk N-body simulation (phi grape GPU, Quillen et al. 2011)

Stellar orbits near resonances

Near OLR

Outside OLR+CR

t=9.900

Near Corotation (CR)

Inside OLR+CR

2 spiral waves

Resonant moving groups (or streams) in the solar neighborhood

Velocity space in a small spatial region in the disk (the u-v plane)

If the Milky Way disk were axisymmetric

Hipparcos stellar velocity distribution

- \cdot Lots of structure is seen in the u-v plane.
- The most prominent low-velocity moving groups in the solar neighborhood favor a dynamical origin (e.g., Famaey et al. 2008).
- Created near resonances with group bar or spiral structure Stellar velocity distribution, Dehnen (1998) 50 - B4 Can constrain both angular Sirius group velocity and orientation 0 v [km/s -50 Pleiades group Dehnen (2000) Quillen & Minchev (2005) Minchev et al. (2010) -100 Hyades stream Hercules stream -100-50100 50 u [km/s] ----> GC

Modeling the u-v plane

Clumps shift with galactic radius and azimuth

Each region on the u-v plane corresponds to a different family of closed/periodic

Modeling the u-v plane

Clumps shift with galactic radius and azimuth

Each region on the u-v plane corresponds to a different family of closed/periodic

-1.0-0.5 0.0 0.5

x/ro

1.0

 $t=7.50, \Omega_{b}=1.80, \epsilon=-0.012$

1.0

0.5

0.0

-0.5

-1.0

y/r0

Matching to Hipparcos data

High-velocity streams in the solar neighborhood

- HR1614 at V= 60 km/s (De Silva PhD thesis)
- An overdensity at V= 80 km/s (Arifyanto and Fuchs 2006)
- Arcturus at V= 100 km/s (Mary Williams PhD thesis)
- \sim RAVE at V= 160 km/s (Klement et al. 2008)

disk can.

Bar and spirals not able to effect the U-V plane at U, V > ~40 km/s But perturbations by dwarf galaxies interacting with the Milky Way

Interaction of the Sagittarius dwarf galaxy with the Milky Way disk

Simulation from Purcell et al. (2011)

Phase wrapping in the disk

 Following an uneven distribution in epicyclic angle, the thick disk can exhibit streams

-100 -20 0 20 -100 -20 0 20 -20 0 0 20 -20 0 0 20 -20 0 0 20 -20 0 0 20 -20 0 0 20 -20 0 0 20 -20 0 0 20 -20 0 0 20 -20 0 0 20 -20 0 0 20 -20 0 0 20 -20 0 0 0 0 0 -20 0 0 0 0 -20 0 0 0 0 0 -20 0 0 0 0 -20 0 0 0 0 -20 0 0 0 0 -20 0 0 0 -20 0 0 0 -20 0 0 0 -20 0 0 0 -20 0 0 0 -20 0 0 -20 0 0 -20 0 0 -20 0 0 -20 0 0 -20 0 0 -20 0 0 -20 0 0 -20 0 0 -20 0 0 -20 0 0 -20 0 0 -20 0 0 -20 0 0 -20 0 0 -20 0 0 -20 0 -20 0 0 -20 -20 0 -20

8

Is the Milky Way ringing?

Match stream positions to known high-velocity streams in the solar neighborhood velocity distribution.

Consistent with a minor merger ~2 Gyr ago.

Disk wobbling or corrugations

Vertical disk waves found in RAVE data

Distance from Galactic center [kpc]

Williams + RAVE (2013)

Vertical disk waves found in RAVE data

A chemo-dynamical evolution model for the Milky Way

Minchev, Chiappini & Martig (2013, 2014)

Classical chemical evolution modeling

- Semi-analytical chemical evolution models (Matteucci & Francois 1989; Prantzos & Aubert 1995; Chiappini et al. 1997, 2001).
- Stars assumed to remain close to their birth places.

Stellar (gas) Radial migration hampers classical chemical evolution modeling

Disk expands due to strong angular momentum transport outwards.

Disk thickens

N-Body Simulations by P. Di Matteo

Classical chemical evolution modeling hampered by radial migration

Stars move away from their birth places (e.g., Sellwood and Binney 2002, Roskar et al. 2008, Minchev & Famaey 2010).

Classical chemical evolution modeling hampered by radial migration

Stars move away from their birth places (e.g., Sellwood and Binney 2002, Roskar et al. 2008, Minchev & Famaey 2010).

Classical chemical evolution modeling hampered by radial migration

- Stars move away from their birth places (e.g., Sellwood and Binney 2002, Roskar et al. 2008, Minchev & Famaey 2010).
- We need to recover the migration efficiency as a function of Galactic radius and time.

Our chemo-dynamical model

- Not easy to match Milky Way chemo-kinematic relations with cosmological simulations which include chemical enrichment (see Calura et al. 2012).
- We resorted to a hybrid approach using a high-resolution simulation of a disk assembly in the cosmological context:
 - Gas infall form filaments and gas-rich mergers
 - Merger activity decreasing toward redshift zero
 - Disk properties at redshift zero consistent with the dynamics and morphology of the Milky Way:
 - The presence of a Milky Way-size bar
 - A small bulge
 - Bar's Outer Lindblad Resonance at ~2.5 disk scale-lengths
 - A detailed chemical evolution model:
 - Matching several observational constraints in the Milky Way.

Disk evolution in the cosmological context

Simulations described in Martig et al. (2009, 2012)

Stars born hot at high redshift: Similar to Brook et al. (2012), Stinson et al. (2013), Bird et al. (2013)

Chemical model assigned to simulation a posteriori

Constrained by:

- The solar and present day abundances of more than 30 elements
- The present SFR
- The current stellar, gas and total mass densities at the solar vicinity
- The present day supernovae rates of type II and Ia
- The metallicity distribution of G-dwarf stars
- Only thin disk chemistry used!

Origin and metallicity distributions of local stars

Older populations arrive from progressively smaller galactic radii due to their longer exposure to migration.

Origin and metallicity distributions of local stars

The metallicity distribution

lzl > 500 pc

For both model and observations the MDF peak shifts to lower [Fe/H] with distance from the disk plane

The [Fe/H]-[O/Fe] relation

Kinematical selection of thin- and thick-disk populations

The [Fe/H]-[O/Fe] relation

Kinematical selection of thin- and thick-disk populations

Variation of velocity dispersion with [Mg/Fe]

Minchev + RAVE (2014)

Velocity dispersion drops at the high-[Mg/Fe] end for each metallicity sub-population

Thick disks are extended

NGC 4762 - a disk galaxy with a bright thick disk (Tsikoudi 1980)

Also argued by Yoachim and Dalcanton (2006); Pohlen et al. (2007); Comerón et al. (2012)

Chemically/Age defined Milky Way thick disk centrally concentrated (e.g., not extended)

Found already earlier by Bensby et al. (2011) and Cheng et al. (2012)

Simulated disks **always flare** (for a single stellar population)

Mergers flare disks

Migration flares disks

But observed edge-on disks do not flare (de Grijs 1998; Comerón et al. 2011)!

Disk flaring in inside-out galaxy formation

Age decline with radius in thick disk predicted

Chemical thick disk \neq Morphological thick disk

Simulation by Scannapieco/Aumer

Minchev et al. (2015)

Thick disks composed from the nested flares of mono-age stellar populations

NGC 891

13 billion years old

11 billion years old

9 billion years old

7 billion years old

5 billion years of

2 billion years o

isk thickness from all stars

Summary

- Galactic disks must be modeled as non-equilibrium systems!
- Signatures of merging satellites can be found in the disk phase space.
 - can last for up to 4-5 Gyr.
 - can constrain time of merger event.
 - can we detect the effect of several mergers?
- A novel approach to chemo-dynamical modeling:
 - more than 30 chemical elements available for doing Galactic Archeology.
 - matching a number of observation and making prediction for future ones.
- Thick disks composed of the flares of populations of different ages:
 - explains extended morphologically defined thick disks in external galaxies.
 - explains the centrally concentrated older populations in the MW.
- Models to be tested in the MW with forthcoming Gaia data +4MOST!