Bologna, 2 November 2017

Kilonovae: A "Cosmic" Klondike The Ultimate Gold Rush

Elena Pian

INAF - IASF Bologna, Italy

On behalf of a large collaboration

Binary compact star systems with merger times less than the age of the Universe

PSR1913+16 Orbital period = 7.75 hr

Hulse & Taylor 1975; Taylor & Weisberg 1982 NP 1993 to Hulse & Taylor

An increased estimate of the merger rate of double neutron stars from observations of a highly relativistic system

M. Burgay¹, N. D'Amico^{2,3}, A. Possenti^{3,4}, R. N. Manchester⁵, A. G. Lyne⁶, B. C. Joshi^{6,7}, M. A. McLaughlin⁶, M. Kramer⁶, J. M. Sarkissian⁵, F. Camilo⁸, V. Kalogera⁹, C. Kim⁹ & D. R. Lorimer⁶

Binary PSR J0737-3039: merger time of ~85 Myr

Double neutron star merger simulations by Computational relativistic astrophysics Groups (S. Rosswog, T. Janka, L. Rezzolla....)

http://compact-merger.astro.su.se

A double neutron star merger is expected to produce:

a GW signal at ~1-1000 Hz (nearly isotropic)
a short GRB (highly directional and anisotropic)
r-process nucleosynthesis (nearly isotropic)

GW amplitude-frequency diagram of known cosmic sources

Bimodal distribution of GRB durations

Periodic table of elements

https://en.wikipedia.org/wiki/R-process

Short GRB130603B (z = 0.356)

Kilonova: Ejection of r-process material from a NS merger (0.01-0.1 Mo) (Barnes & Kasen 2013)

Мн ≈ -15 Мг ≈ -13

Tanvir et al. 2013; Berger et al. 2013

17 Aug 2017 12:41

Credit: LIGO Scientific Collaboration, Virgo Collaboration, Fermi Collaboration, Integral collaboration

LVT151012 ~~~~~~

GW170817 🛩

0 1 time observable (seconds)

LIGO/University of Oregon/Ben Farr

2

GW170104 LVT151012

GW151226

GW170817

GW150914

LIGO/Virgo/NASA/Leo Singer (Milky Way image: Axel Mellinger)

Search for GW170817 optical counterpart: GW error regions and Swope 1m pointings

Comparison of Swope discovery image with archival HST image

Coulter et al. 2017

Host of GW170817: Lenticular galaxy NGC 4993 (40 Mpc)

Levan et al. 2017

Energy output of GRBs

Multiwavelength light curves of AT2017gfo

Troja et al. 2017

Optical and near-infrared light curves of GW170817 / AT2017gfo

AT2017gfo evolves much more rapidly than any supernova

Arcavi et al. 2017

Time: -1225 days

ESO VLT X-Shooter spectral sequence of kilonova GW170817

Pian et al. 2017; Smartt et al. 2017

Geometry of 3-component model for kilonova

Tanaka et al. 2017, PASJ

Element abundances at 1 day after merger

Tanaka et al. 2017, PASJ

Kilonova 3-component model for AT2017gfo

Kilonova 3-component model for AT2017gfo: ejecta mass is 0.03-0.05 solar masses

Conclusions and future work

GWs from double neutron star merger were directly detected. The signature of r-process nucleosynthesis was unambiguously detected. A unified scheme for short GRBs has been established.

The preliminary models require more than one component, with different Proportions of species (lanthanide-rich vs lanthanide-free). The ejecta are about 0.03-0.05 solar masses.

However we need more realistic atomic models and opacities to use with our radiative transport codes.

Future work must focus on identifying accurately the atomic species and measuring their abundances. We will thus trace heavy elements formation and evolution in the Universe.

Fundamental problem of NS Equation of State can also be addressed with joint gravitational and electromagnetic information (mass ejection should be larger for smaller radii of the NSs, i.e., for softer EoS).