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Dynamics dominated by gas, opacity dominated by dust
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The different components of discs and their tracers

- Protostellar discs made primarily of gas (99%, mostly Hz) and dust
(1%)

- Dynamics dominated by gas, opacity dominated by dust

- Scattered light images: prolbe micron-sized dust in the disc
surface

- What about gas?

- Either derived from dust assuming some gas/dust ratio (very
uncertain)

- Ho molecule very hard to observe, have to rely on other less
abudant tracers (CO, HCO+,...) AND assume abudance ratios
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The revolution Is happening now

- With every new instrument, emphatic statements on the
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- Disc imaging across the years
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Disc Imaging across the years
Scattered light with extreme AO (eg. SPHERE, HiCiao)
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The revolution Is happening now

With every new instrument, emphatic statements on the
revolution it will bring

Disc Imaging across the years
Spectacular spirals with ALMA
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Disc Imaging across the years
Spectacular spirals with ALMA
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What should modelers do?

-Or many years, disc models where 1D, axi-symmetric,
oower-law structures for density and temperature

-+ Going beyond such models is essential not only to
explain observations, but also to understand dynamics

wo component modeling (gas/dust) is crucial
(CRUCIAL)



What do we (in Milano) do”

- We start from a hydrodynamical SPH simulation with
- Two components: gas and dust coupled though drag

- Several point masses: star(s), planets

- Self-gravity (of both gas and dust)
- We use a Monte-Carlo ray tracing code to get dust temperatures from irradiation

- We compute synthetic images either in scattered light or in dust continuum
assuming a given instrumental response (ALMA, HICIAO, SPHERE, etc...)

- What we do NOT do (yet):

- Chemistry: chemical network needed to get molecular species and produce
gas intensity maps

- Radiative transfer: to have temperature self-consistently during hydro
simulation



Dust/gas dynamics

+ Dust dynamics depends on dust size

+ Drag force (Stokes or Epstein drag) couples gas and dust

motion G — tstopﬂ ~

-+ Gas motion: slightly sub-Keplerian azimuthally (due to
pressure gradients), small radial velocity due to viscosity
(accretion)

dlog2 [ H .
Vg o = \/1 1log R (E) VK ~ Vg + Av

UgyR — (X(H/R)QUK




Dust/gas dynamics

+ Dust dynamics depends on dust size

+ Drag force (Stokes or Epstein drag) couples gas and dust

motion G — tstopﬂ ~

-+ Gas motion: slightly sub-Keplerian azimuthally (due to
pressure gradients), small radial velocity due to viscosity
(accretion)

- Dust radial drift
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Dust/gas dynamics

Dust dynamics depends on dust size
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Dust traps

Dust with St~17 is trapped at gas pressure maxima

P 3 +ve pressure gradient
outward dust migration
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- Spirals can be induced
oy

+ Self-gravity
- Planets

- In both cases they are
density waves

- A little advertisment:
Kratter & Lodato,
ARA&A, 2016 (ArXiv:
1603.01280)

Gravitational Instabilities
in Circumstellar Disks

Kaitlin M. Kratter' & Giuseppe Lodato?
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Abstract

Star and planet formation are the complex outcomes of gravitational
collapse and angular momentum transport mediated by protostellar
and protoplanetary disks. In this review we focus on the role of grav-
itational instability in this process. We begin with a brief overview of
the observational evidence for massive disks that might be subject to
gravitational instability, and then highlight the diverse ways in which
the instability manifests itself in protostellar and protoplanetary disks:
the generation of spiral arms, small scale turbulence-like density fluc-
tuations, and fragmentation of the disk itself. We present the analytic
theory that describes the linear growth phase of the instability, supple-
mented with a survey of numerical simulations that aim to capture the
non-linear evolution. We emphasize the role of thermodynamics and
large scale infall in controlling the outcome of the instability. Despite
apparent controversies in the literature, we show a remarkable level of
agreement between analytic predictions and numerical results. In the
next part of our review, we focus on the astrophysical consequences of
the instability. We show that the disks most likely to be gravitationally
unstable are young and relatively massive compared to their host star,



Linear stabillity criterion

- Linear dispersion relation
(w —m)?* = c2k* — 2rGY|k| + k?
- Well known axisymmetric instability criterion:

CsK -
©= TG <@~
-+ Equivalent form of the instabllity criterion

Mdisc(R) > E
M, ~ R
- Need the disc to be cold and/or massive

Lin & Shu (1964)

- What are the masses and aspect ratio in actual
protostellar discs”?
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Are protostellar discs linearly unstable”

- Midplane temperature for irradiated diSCS (Chiang & Goldreich
1997, Chiang & Youdin 2009) QIVES:

7 2/7
— ~0.02 i
7002 (35

- Therefore H/R varies from 0.02 at 1AU to 0.06 at 100 AU

- Need disc masses of order 5% of the stellar mass to be
unstable

- Protostellar disc masses difficult to measure (see Hartmann et
al 2000)



Are protostellar discs linearly unstable”

Disc masses in Taurus and Ophiucus
by Andrews and Williams (2005, 05
2007)

Disc masses might be underestimated o |

significantly (Hartmann et al 2006)

Uncertainties in dust opacities
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Are protostellar discs linearly unstable”

Class II (T Tauri) discs are
relatively evolved. Can we infer

the masses at early stages? 1/2(2—~)
Simple (simplistic?) approach: MO _ Md ( t) ( td >
- Take all objects with measured M tg — 1
and Mdot
Apply similarity solutions $ = M, d (t)
(Lynden-Bell & Pringle 1973) d 9 (2 o ’Y) M ( t)

Find “initial” disc mass and
evolutionary timescale
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Class II (T Tauri) discs are
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the masses at early stages?

o
o
I

Simple (simplistic?) approach:

- Take all objects with measured M
and Mdot

06 [

Apply similarity solutions
(Lynden-Bell & Pringle 1973)

Find “initial” disc mass and
evolutionary timescale

cumulative distribution

o
(V)
I

-3 -2

1og(MO/:'M*) |



A couple of interesting examples

-+ Class 0O/ objects
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The “standard” picture of self-gravitating disc
dynamics: thermal saturation

- Start from a disc characterized by (2,7, R)

- Compute three dimensionless parameters (@, 8, Ma/M.)

Q>1 Q~1

Stable Linearly unstable

— T~

6 — Ot | 5 Z ﬁcrit 6 f, 5(:1"1‘5
Thermal saturation Fragmentation

— T

Myg/M, < 1 My/M, ~ 1
Local, self-regulation Global
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dynamics: thermal saturation

Start from a disc characterized by (2, T, R)

ge—
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In which parameter range do we expect actual
ISCS?
protostellar discs Kratter & Lodato (2016)

Compute(3, T, R)based on a given total mass, outer radius,
and accretion rate, assuming thermal equilibrium including
irradiation and viscous heating.

Log T (K)
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A typical Class II object
My /M, = 0.05, Rowt = 100au, M, = 1M4



In which parameter range do we expect actual
ISCS?
protostellar discs Kratter & Lodato (2016)

Compute(23, T, R)based on a given total mass, outer radius,
and accretion rate, assuming thermal equilibrium including
irradiation and viscous heating.
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My /M, = 0.35, Rous = 30au, M, = 0.8M
See also the case of WL12 Miotello et al 2015

B0 02 04 06 08 10 12 14



In which parameter range do we expect actual
ISCS?
protostellar discs Kratter & Lodato (2016)

Compute(23, T, R)based on a given total mass, outer radius,
and accretion rate, assuming thermal equilibrium including
irradiation and viscous heating.
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s there a way to observationally distinguish Gl
spirals from planet spirals”

- We know that both Gl and planets produce spirals

Planetary spirals are typically tightly wound while Gl might
have open spirals. Is this true”?

D|p|erro et aI 2015a -
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s there a way to observationally distinguish Gl
spirals from planet spirals”

- We know that both Gl and planets produce spirals

Planetary spirals are typically tightly wound while Gl might
have open spirals. Is this true”?

D|p|erro et aI 2015a :

‘ Dong et aI 2015 Bemsty et al 2015




Outstanding questions on the gravitational
instability

A lot has been understood in the last ~10 years on the thermal
saturation of gravitational instability

Very little progress on other saturation mechanisms that are
more relevant for irradiated, high-mass discs

Discs in this regime might be the most common to develop Gl

How to observationally distinguish planet induced spirals from
Gl induced spirals?



- By far the most significant novelty coming from disc
imaging is the widespread presence of gaps (e.g. HL Tau)

- Many mechanisms proposed to create gaps (chemistry,
dead zones in the MR, etc.)

he most natural explanation is associated with the
presence of young planets

- The gravitational torque of the planet is able to carve a
gaps in the disc






Gap opening criteria: the gas disc

+ For a gas disc it can be shown that to open a gap

3H  500QR? |
| <1 Cridaetal 2006

SR qU

- The gap width is given by

(Agas>3 _ 2O

R U

-+ A gap produces a pressure maximum

- For thick-ish discs (H/R~0.1), gap opening does not prevent
accretion (Artymowicz & Lubow 1994)
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Gap opening criteria: the gas disc

+ For a gas disc it can be shown that to open a gap
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- The gap width is given by
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-+ A gap produces a pressure maximum

- For thick-ish discs (H/R~0.1), gap opening does not prevent
accretion (Artymowicz & Lubow 1994)



Gap opening in a dust disc
(Dipierro et al 2016)

+ Several possible mechanisms, depending on planet mass and Stokes
number

- Large planet (satisfies gas gap opening)
- Small dust (St<<7): follows the gas

+ For St~17: dust trapping at the gap edge (Pardekooper & Mellema
2004)

- Dust filtration at the gap edge (Rice et al 20006)
- This is likely to create narrow rings in dust
- Small planet (does not open a gap in the gas)
- For St>~17, a gap can still be opened in the dust

- Here, drag resists rather than assists gap opening



Gap opening in a dust disc
(Dipierro et al 2016)
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Gap opening in a dust disc
(Dipierro et al 2016)
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Dust gaps do not necessarily correspond to gas
gaps

- TW Hya
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Explaining the HL Tau disc
(Dipierro et al 2015b)

dust

o

2.5 -2 -1.5 -1 -0.5

Three planets: 0.2Mup (@13.2au), 0.27Myyp (@32.3au), 0.55Myup (@68.8au)
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—xplaining the HL Tau disc
(Dipierro et al 2015b)

Simulate 6 different sizes, assume a dust size distribution and a
gas/dust ratio —> compute synthetic images



—xplaining the HL Tau disc
(Dipierro et al 2015b)
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- Transition discs are discs displaying a large inner cavity

- Originally discovered from SED modeling

- Many possible sources of inner clearing:

- A massive planet
- Photoevaporation

Imaging of transition discs sometimes show non-
axisymmetric structures (van der marel et al 2016,
Casassus et al 2015)



1345 GHz continuum

690 GHz conlinuum N RN [P P
23,

187.

F (mlJy beam™")

61.

- Photoevaporation

Imaging of transition discs sometimes show non-
axisymmetric structures (van der marel et al 2016,

Casassus et al 2015)

16.

F (mJy beam™)



690 GHz conlinuum o ol s 0128345 GHZ contlinuum

ll"‘/- szj. _ 16.

0.05 0.1 0.15 0.2

| | | |

F (mlJy beam™")

61.

- Photoevaporation

- Imaging of transition discs
axisymmetric structures (ve 7t

Casassus et al 2015) O
T HD 142527

2 1 0 -1 -2

F (mJy beam™)



1345 GHz continuum

690 GHz conlinuum N RN [P P
23,

187.

F (mlJy beam™")

61.

- Photoevaporation

Imaging of transition discs sometimes show non-
axisymmetric structures (van der marel et al 2016,

Casassus et al 2015)

16.

F (mJy beam™)



On the origin of horseshoes (Ragusa et al 2016)

A common interpretation is based on vortices originating from Rossby-

wave instability at the edge of the the gap formed by a planet (Lyra & Lin
2013)

However, it is well known from the SMBH binary community that
circumbinary discs develop a dynamical instability (D’Orazio et al 2013)
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On the origin of horseshoes (Ragusa et al 2016)

A common interpretation is based on vortices originating from Rossby-

wave instability at the edge of the the gap formed by a planet (Lyra & Lin
2013)

However, it is well known from the SMBH binary community that
circumbinary discs develop a dynamical instability (D’Orazio et al 2013)

Name Contrast  Dust trapping Companion Consistency
HD135344B < 10 No Strong indication Yes
SR 21 < 10 No Indication Yes
DoAr 44 < 10 ? ? Yes
IRS 48 2 100 Yes ? No
HD142527 ~ 30 cm grains? Yes Yes

Lk Ha 330 < 10 ? Indication Yes




Asymmetric cavities: binaries vs vortices

- This model only produces asymmetries at the cavity edge
Require relatively massive companion
Does not require low viscosity

+ Structure depends on coupling with gas: strong coupling
results in more concentrated “clump”

If St >~1, just produce an eccentric ring

Expect structures to become wider azimuthally with
Increasing wavelength
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Modeling HD142527

First attempt at modeling this
Stellar mass: 1.8Msun
Companion mass: 0.3Msun, a=25au, €=0.5

Disc: Rin=30au, Rout=300au, inclined by 70deg wrt companion, 1M particles
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How rare is HD1425277

- HD135344B: shows shadows, possibly a warped Inner
disc, spirals, and a dust asymmetric structure

Shadows cast on the transition disk of HD 135344B ***

Multi-wavelength VLT/SPHERE polarimetric differential imaging

T. Stolker', C. Dominik', H. Avenhaus®, M. Min™ ', J. de Boer™®, C. Ginski®, H.M. Schmid®, A. Juhasz’, A. Bazzon®,

L.B.EM. Waters™!, A. Garufi®, J.-C. Augereau®?, M. Benisty*?, A. Boccaletti'®, Th. Henning'!, A.-L. Maire'!,
2 M.R. Meyer®, M. Langlois'* 4, C. Pinte'*?, S.P. Quanz®, C. Thalmann®, J.-L. Beuzit*®, M. Carbillet'*,

F. Ménard'*
A. Costille'*, K. Dohlen'®, M. Feldt'!, D. Gisler®, D. Mouillet®?, A. Pavlov'!, D. Perret'?, C. Petit'®, J. Pragt'’,
S.Rochat®? R. Roelfsema'’, B. Salasnich'®, C. Soenke'?, and F. Wildi*®

Conclusions. The shadows on the outer disk of HD 135344B could be cast by an inner dust belt which is 22° inclined with respect
10 the outer disk, a warped disk region which connects the inner disk with the cavity and an accretion funnel flow from the inner disk
onto the star, The wide open spiral arms indicate the presence of one or multiple massive protoplanets, a local disk instability beyond

the dust cavity or a combination of the two. 13 )
Cco 345 GHz continuum

HD135344B

F (mJy beam™)

Garufiet al os
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