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                                         Black holes
The concept of black-hole (BH) has been considered very 
fascinating by scientists even before the introduction of 
general relativity (see C. Corda, A clarification on the debate 
on "the original Schwarzschild solution", Electron. J. Theor. 
Phys. 8, 25, 65-82 (2011) for an historical review).

A BH is a region of space from which 
nothing, not even light, can escape. It 
is the result of the deformation of 
spacetime caused by a very compact 
mass. Around a BH there is an 
undetectable surface which marks the 
point of no return. This surface is 
called an event horizon. It is called 
"black" because it absorbs all the light 
that hits it, reflecting nothing, just 
like a perfect black body in 
thermodynamics.



  

                  The root for quantum gravity

BHs arise from the gravitational collapse of very massive stars, 
which  is one of the greatest  processes in Nature. 
However, an unsolved problem concerning such objects is the 
presence of a space-time singularity in their core. Such a 
problem was present starting from the first historical papers 
concerning BHs. It is a common opinion that this problem could 
be solved when a correct quantum gravity theory will be, finally, 
obtained, see Gen. Rel. Grav. 41, 4, 673-1011, Special Issue on 
quantum gravity, April 2009, for recent developments.

Thus, BHs are considered theoretical 
laboratories for testing models of a 
yet unknow unitary quantum gravity 
theory.  We need a more general 
unitary theory, i.e. a quantum gravity 
theory,  which will permit to unify 
general relativity and quantum 
mechanics in order to totally 
understand all the properties of BHs.



  

Entropy, information and black hole's 
evaporation

Hawking radiation (S. W. Hawking, Commun. Math. Phys. 43, 
199 (1975)) and BH’s entropy (J. D. Bekenstein, Nuovo Cim. 
Lett. 4, 737 (1972)) are the two most important predictions of 
a yet unknown unitary quantum theory of gravity. They are 
also connected to the famous BH information paradox (S. W. 
Hawking,  Phys. Rev. D 14, 2460 (1976): will information be 
lost in the process of BH's evaporation?).
A remarkable result by Burinskii
Gen. Rel. Grav. 41, 2281-2286 (2009)
Firts Prize Winner at GRF 2009,
showed that, for the Kerr-Schild BH
“interior of a BH is not 
isolated from the exterior region 
and matter may leave the interior in 
the form of the outgoing null radiation,
and so, there is no information loss 
paradox”.

                                             

                                  
                 

      
      



  

The “gravitational atom” 

Researchers in quantum gravity have the intuitive, common 
conviction that, in some respects, BHs are the fundamental 
bricks of quantum gravity in the same way that atoms are the 
fundamental bricks of quantum mechanics (Bekenstein). This 
similarity suggests that the BH mass should have a discrete 
spectrum.  On the other hand, the analogy generates an 
immediate and natural question: if the BH is the nucleus of the 
“gravitational atom” in quantum gravity, what are the 
electrons? In this lecture,we will give an intriguing answer to 
this question. 

 

      
    



  

Non-thermal spectrum and effective 
temperature

Differently from Hawking's original computation, by using the 
“tunnel approach”, Parikh and Wilczek showed that the 
radiation spectrum cannot be strictly thermal (M. K. Parikh and 
F. Wilczek, Phys. Rev. Lett. 85, 5042 (2000)). Parikh released an 
intriguing physical interpretation of this fundamental issue by 
discussing the existence of a secret tunnel through the BH’s 
horizon (M. K. Parikh, Gen. Rel. Grav. 36, 2419 (2004), First 
Award at GRF 2004). By implementing  energy conservation, the 
BH  contracts during the process of  radiation. Thus, the 
horizon recedes  from its original radius to a new,  smaller 
radius. Hence, BHs cannot strictly emit like black bodies. This
has profound implications for  the BH information puzzle 
because arguments that information is lost during BH 
evaporation rely in part on the assumption of strict thermality 
of the spectrum. 

 

      
    



  

In Hawking's original computation the probability of emission 
is (we use Planck units, G=c=kB=1) 

 
                                  
  
                                             

 ω is the frequency of the emitted radiation.

The remarkable correction by Parikh and Wilczek, due by an 
exact calculation of the action for a tunnelling spherically 
symmetric particle, yields

 

      
     

is the Hawking temperature 



  

This result has also taken into account the conservation of 
energy and this enables a correction, the additional term ω/2M.
Let us introduce the effective temperature (which
depends on the energy-frequency of the emitted radiation)

The probability of emission can be rewritten in Boltzmann-like 
form

The effective temperature and the following analysis have been 
introduced in C. Corda, JHEP 08, 101 (2011) and refined in C. 
Corda, Int. Journ. Mod. Phys. D 21, 1242023 (2012, Honorable 
Mention in the Gravity Research Foundation Competition) in C. 
Corda, Eur. Phys. J. C 73, 2665 (2013) and in other papers.



  

           Exp[-β
E
(ω)ω] 

is the effective Boltzmann factor where  

The ratio 

                          T
E
(ω)/T

H
=2M/(2M-ω)

represents the deviation of the radiation spectrum of a BH from 
the strictly thermal feature. In other terms, as the correction by 
Parikh and Wilczek implies that a BH does not strictly emit like a 
black body, the effective temperature represents the temperature 
of a black body that would emit the same total amount of 
radiation.
 



  

 Finalizing the Parikh-Wilczek analysis  
I have recently finalized the Parikh and Wilczek tunnelling 
picture showing that the Parikh-Wilczek probability of emission 
is indeed associated to the two distributions

for bosons and fermions respectively, which are non-strictly 
thermal, C. Corda, Ann. Phys. 337, 49 (2013).

  
        

 



  

      Black hole's quasi-normal modes 
The physical interpretation of BH’s quasi-normal modes (QNMs) 
is fundamental for realizing unitary quantum gravity theory as 
BHs are considered theoretical laboratories for testing models of 
such an ultimate theory and their QNMs are natural candidates 
for an interpretation in terms of quantum levels. In thermal 
approximation and for large n (the principal quantum number),  
the frequencies of quasinormal modes for the Schwarzschild BH 
have the structure (L. Motl,  Adv. Theor. Math. Phys. 6 (2003) 1135)

  

.



  

    
BH QNMs are frequencies of radial spin perturbations which 
obey a time independent Schröedinger-like equation (L. Motl,  
Adv. Theor. Math. Phys. 6 (2003) 1135). They are the BH modes of 
energy dissipation which frequency is allowed to be complex. 
They are the oscillation of the BH horizon due to external 
perturbations.  By using Bohr's Correspondence Principle, which 
states that “transition frequencies at large quantum numbers 
should equal classical oscillation frequencies”, Hod has shown 
that QNMs release information about the area quantization as 
QNMs are associated to absorption of particles (S. Hod, Gen. Rel. 
Grav. 31, 1639 (1999, Fifth Award in the Gravity Research 
Foundation Competition)). Hod's work was refined by Maggiore 
(M. Maggiore, Phys. Rev. Lett. 100, 141301 (2008)), who solved 
some important problems. 
On the other hand, as QNMs are countable frequencies, ideas on 
the continuous character of Hawking radiation did not agree 
with attempts to interpret QNMs in terms of emitted quanta, 
preventing to associate QNMs modes to Hawking radiation (L. 
Motl,  Adv. Theor. Math. Phys. 6 (2003) 1135).
  

.



  

      Bohr-like model of black holes
Recently, Zhang, Cai, Zhan and You (B. Zhang, Q. Cai, M. Zhan, L. 
You, Int. J. Mod. Phys. D  22, 1341014 , First Award Gravity 
Research Foundation 2013) and myself and collaborators (C. 
Corda, JHEP 08, 101 (2011), C. Corda, Int. Journ. Mod. Phys. D 21, 
1242023 (2012), C. Corda, S. H. Hendi, R. Katebi, N. O. Schmidt, 
JHEP 06, 008 (2013), C. Corda, Eur. Phys. J. C 73, 2665 (2013), etc. 
observed that the non-thermal spectrum by Parikh and Wilczek 
also implies the countable character of subsequent emissions of 
Hawking quanta. This issue enables a natural correspondence 
between QNMs and Hawking radiation, permitting to interpret 
QNMs also in terms of emitted energies. In fact, QNMs represent 
the BH reaction to small, discrete perturbations in terms of 
damped oscillations. The capture of a particle which causes an 
increase in the horizon area is a type of discrete perturbation. 
Then, it is very natural to assume that the emission of a particle 
which causes a decrease in the horizon area is also a 
perturbation which generates a reaction in terms of countable 
QNMs as it is a discrete instead of continuous process. On the 
other hand, the correspondence between emitted radiation and 
proper oscillation of the emitting body is a fundamental behavior 
of every radiation process in Science. 
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From the quantum mechanical point of view, one considers Dirac 
delta perturbations which represent subsequent absorptions of 
particles having negative energies which are associated to 
emissions of Hawking quanta in the mechanism of particle pair 
creation. Based on such a natural correspondence between 
Hawking radiation and BH QNMs, one can consider QNMs in 
terms of quantum levels also for emitted energies. This important 
point is in agreement with the general idea that BHs can be 
considered in terms of highly excited states in an underlying 
quantum gravity theory.

C. Corda, Class. Quant. Grav. 32, 195007 (2015).
C. Corda, Adv. High En. Phys. 867601 (2015). 
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To take into due account the deviation from the thermal 
spectrum, one must replace the Hawking temperature TH with 
the effective temperature TE in the equation of QNMs, see C. 
Corda, Eur. Phys. J. C 73, 2665 (2013),  C. Corda, Adv. High En. 
Phys. 867601 (2015):

An intuitive explanation is the following. In thermal 
approximation, the QNMs determine the position of poles of a 
Green’s function on the given background and the Euclidean BH 
solution converges to a thermal circle at infinity with the inverse 
temperature 1/TH  (see L. Motl and A. Neitzke, Adv. Theor. Math. 
Phys. 7 (2003) 307). Thus, the spacing of the poles in the QNMs 
equation coincides with a spacing which scales like TH expected 
for a thermal Green’s function.



  

But, if we want to consider the deviation from the thermal 
spectrum, it is natural to assume that the Euclidean BH solution 
converges to a non-thermal circle at infinity. Therefore, it is 
straightforward the replacement

which takes into account the deviation of the radiation spectrum 
of a BH from the strictly thermal feature. In this way, the spacing 
of the poles coincides with a spacing which scales like TE(ω) 
expected for a non-thermal Green’s function (a dependence from 
the frequency is present).
A rigorous explanation is the following. QNMs are frequencies 
governed by a Schrodinger equation with the famous Regge-
Wheeler potential. In Adv. Theor. Math. Phys. 6, 1135 (2003),  Motl 
solved such  Schrodinger equation satisfying purely outgoing 
boundary conditions both at the horizon
(r = 2M) and in the asymptotic region (r = infinity).



  

But, if we want to take into due account the conservation of 
energy, we have to replace the original BH’s mass M in the  
Schrodinger equation with an effective mass of the contracting 
BH. In other words, if M is the initial mass of the BH before the 
emission, and M − ω is the final mass of the BH after the 
emission, the conservation of the energy enables the introduction 
of the effective mass

of the BH during the emission of the particle, i.e. during the 
contraction’s phase of the BH.
If one realizes step by step the same rigorous analytical 
calculation in by Motl, satisfying purely outgoing boundary 
conditions both at the effective horizon (r = 2ME ) and in the 
asymptotic region (r = infinity), the final result will be, obviously 
and rigorously, the equation of QNMs where TE  replaces TH, C. 
Corda, Eur. Phys. J. C 73, 2665 (2013), C. Corda, Adv. High En. 
Phys. 867601 (2015).



  

Considering the leading asymptotic behavior the physical 
solution is

which is interpreted like the total energy emitted by the BH at 
that time, i.e. when the BH is excited at a level n.
Considering an emission from the ground state (i.e. a BH which is 
not excited) to a state with large n=n1, the BH mass changes from
M to

In the transition from the state with n=n1to a state with n=n2 
where n2 > n1,  the BH mass changes again to 

 

 



  

where

is the jump between the two levels due to the emission of a 
particle. Thus, in our BH model, during a quantum jump a dis-
crete amount of energy is radiated and, for large values of the 
principal quantum number n, the analysis becomes independent 
from the other quantum numbers. In a certain sense, QNMs 
represent the "electron" which jumps from a level to another one 
and the absolute values of the QNMs frequencies represent the
energy "shells". The model is in turn analogous  to the historical 
semi-classical model of the structure of a hydrogen atom 
introduced by Bohr in 1913. In that model electrons can only gain 
and lose energy by jumping from one allowed energy shell to 
another, absorbing or emitting radiation with an energy 
difference of the levels according to the Planck relation.  In our 
BH model, QNMs can only gain and lose energy by jumping from 
one allowed energy shell to another, absorbing or emitting 
radiation (emitted radiation is given by Hawking quanta) with an 
energy difference of the levels according to the above equation.

 

 



  

The similarity is completed if one notes that the interpretation is 
of a particle (the “electron”) quantized on a circle of length

 which is the analogous of the electron travelling in circular 
orbits around the hydrogen nucleus,  similar in structure to the 
solar system, of Bohr model. On the other hand, Bohr model is an 
approximated model of the hydrogen atom with respect to the 
valence shell atom model of full quantum mechanics. In the same 
way, our BH model should be an approximated model with 
respect to the definitive, but at the present time unknown, BH 
model arising from a full quantum gravity theory.
There are various important consequences of the above approach 
on the quantum physics of BHs starting by the area quantization.
In Bekenstein's original computation in Lett. Nuovo Cim. 11, 467 
(1974) the area quantum of the Schwarzschild BH was

               ∆A = 8π

 

 



  

Setting n-1=n1, n=n2,  we get the emitted energy for a jump among 
two neighboring levels as

The BH horizon area A is related to the mass through the relation
A=16M2. Thus, the variation of the mass is connected with the 
variation of the area by

Then, by using the effective mass corresponding to the
transitions between the two levels n and n − 1, which is the same 
for emission and absorption, we get

Thus, we retreive the famous Bekenstein's result on the area 
quantization
 

 

 

 



  

This analysis will have important consequences on BH entropy. 
Assuming that, for large n, the horizon area is quantized our 
approach gives the number of quanta of area before the emission 
as 

 
and after the emission as
 

The famous formula of Bekenstein-Hawking entropy  now 
becomes a function of the overtone number n. Before the 
emission 

           

 

 

 



  

After the emission

In the limit n => infinity the emitted energy =>1/4M, and we re-
obtain the standard result in literature (see for example A. 
Barvinsky, S. Das and G. Kunstatter,  Class. Quant. Grav. 18 (2001) 
4845)

In any case, it is a general belief that here is no reason to expect 
that Bekenstein-Hawking entropy will be the whole answer for a 
correct theory of quantum gravity. In order to have a better 
understanding of BH’s entropy, it is imperative to go beyond
Bekenstein-Hawking entropy and identify the sub-leading 
corrections. In Phys. Lett. B 668 (2008) 353, Zhang used the 
quantum tunnelling approach  to obtain the sub-leading 
corrections to the second order approximation. In that approach, 
the BH’s entropy contains three parts: the usual Bekenstein-
Hawking entropy, the logarithmic term and the inverse area term

           

 

 

 



  

The logarithmic and inverse area terms are the consequence of 
requesting to satisfying the unitary quantum gravity theory. A 
part from a coefficient, this correction to the BH’s entropy is 
consistent with the one of loop quantum gravity. In fact, in loop 
quantum gravity the coefficient of the logarithmic term has been 
rigorously fixed at 1/2, see A. Ghosh and P. Mitra,
Phys. Rev. D 71 (2005) 027502. By using our correction to 
Bekenstein-Hawking entropy we get

before the emission                                          after the emission 

           

 

 

 



  

that in the limit n goes to infinity becomes

Our results are in perfect agreement with previous literature.
Our Bohr-like model for BHs has important implications for the 
BH information paradox. In fact, this Lecture has shown that  BH 
QNMs are really the BH quantum levels in our Bohr-like
semi-classical approximation. This point implies that BHs are 
well defined quantum mechanical systems, having ordered, 
discrete quantum spectra, in perfect agreement with the 
unitarity of the underlying quantum gravity theory and with
the idea that information should come out in BH evaporation.
The time evolution of the model obeys indeed a Time-Dependent 
Schrodinger Equation and information comes out: 
C. Corda, Ann. Phys., 353, 71, (2015).

           

 

 

 



  

                               Conclusion remarks
It is an intuitive but general conviction that BHs result in 
highly excited states representing both the “hydrogen atom” 
and the quasi-thermal emission in quantum gravity. In this 
Lecture we have shown that such an intuitive picture is more 
than a picture, discussing a model of quantum BH
somewhat similar to the historical semi-classical model of the 
structure of a hydrogen atom introduced by Bohr in 1913. Our 
model has important implications for the BH information 
paradox and is in perfect agreement with existing results in 
the literature, starting from the famous result of Bekenstein 
on the area quantization.



  

                               Work in progress
1) It will be needed to generalize the analysis to all the types 
of BHs (the current analysis concerns the Schwarzschild BH).
2) It will be needed to quantize the model for the full strong 
field generated by the BH. In other word, the dream is to 
create a “QNMs quantum gravity”. 
4) Collaboration with Indian researchers of the Department 
of Mathematics, Jadavpur University, Kolkata West Bengal, 
India. 
5) Collaboration with the  Mahani Mathematical Research 
Center, Shahid Bahonar University of Kerman, Kerman, Iran 
for a connection between topological entropy and Bohr-like 
black holes.
6) Creation of a strong research group on black hole physics 
in the Research Institute for Astronomy and Astrophysics of 
Maragha involving students and researchers. 
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