The centre of M31 vs the Milky Way

John Magorrian

Bologna, 17 Jan 2017

★御▶★臣▶ 臣

Outline

Both M31 and MW have:

- central supermassive black hole (BH)
- surrounded by a dense cluster of stars
 - MW's cluster is typical
 - M31's is unusual

Outline:

- Motivation/context
- 2 MW
- M31

Motivation

HST and friends: black holes (BHs) (Gültekin et al 2009)

Black holes: standard equipment

$$egin{aligned} \mathcal{M}_ullet \sim 3 imes 10^8 \left(rac{\sigma_{ ext{bulge}}}{200 ext{ km/s}}
ight)^4 \ \sim 2 imes 10^{-3} \mathcal{M}_{ ext{bulge}} \end{aligned}$$

Nuclear stellar clusters (NCs)

(e.g., van der Marel et al. 2007)

Only "hot" component in late-type spirals. Best studied there. Present in $> \frac{1}{2}$ of early- and late-type spirals, dEs, low-*L* Es. Bursty star formation, detectable within last 10⁸ yr.

Scaling – NSCs in early-type Virgo galaxies (e.g., Wehner & Harris 2006; Côté et al 2006)

$$L\sim 10^6 L_\odot$$
, $r\propto L^{0.5}$

- Photometric masses! (For all but \sim 10)
- Low-mass extension of *M*_●-*M*_{bulge}?
- But NSCs bigger by 3.3x?
- Common formation mechanism?
- Do NSCs harbour BHs? Yes! (NGC 4395, MW)

Three problems:

- How do BH and surrounding bulge form? How do they "know" about one another?
 - bulge characteristic radius (\sim kpc) vs
 - BH "sphere of influence" radius (~ pc)
- Onnection between BH and NSC?
- **③** Dynamics of dense stellar systems $(10^6 M_{\odot} \text{ pc}^{-3})$
 - Dynamical processes around BH? (Mass segregation, resonant relaxation...)
 - Collisions of stars?
 - Tidal disruption of stars by BH?
 - Gravitational wave emission from neutron stars/white dwarfs? (EMRI)

Solution to 3: focus on nearby galaxies! (MW, M31)

What would we like to know?

We (usually) only have a snapshot of present state of galaxy.

Two things we'd like to extract from snapshot

- 6d phase space DF f(x, v) of each stellar pop
- 2 gravitational potential $\Phi(\mathbf{x})$
 - ideally split into contributions from stars, BH, "dark" matter etc.

Observed snapshot = projection of $f(\mathbf{x}, \mathbf{v})$. Usually need **Jeans' theorem** to constrain $\Phi(\mathbf{x})$.

Test scenarios for galaxy formation and evolution against resulting Φ , *f*.

The Milky Way

(massive failure)

Stellar pops at Galactic centre (scale $\sim 10 \, \text{pc}$)

(Genzel et al., Ghez et al.)

NSC emerges clearly in MIR:

Schödel+2014 (L: 4.5µm; M: 1.2 - 2.2µm; R: K)

Detect giants, supergiants, $MS > 3 M_{\odot}$ (not *identify*: crowding, extinction) Populations:

- dominant old population depleted in inner 10 arcsec
- B stars ("S" stars) in inner arcsec
- O stars further out, some in disc-like configuration.

Stellar pops at Galactic centre (scale $\sim 10\, pc)$

(Genzel et al., Ghez et al.)

NSC emerges clearly in MIR:

Detect giants, supergiants, $MS > 3 M_{\odot}$ (not *identify*: crowding, extinction) Populations:

- dominant old population depleted in inner 10 arcsec
- B stars ("S" stars) in inner arcsec
- O stars further out, some in disc-like configuration.

S stars (scale $\sim 10^{-2}$ pc.) (Most recent: Gillessen et al 2017)

Simultaneous 7 + 6N = 109-parameter fit to N = 17 stars:

Good handle on M_{\bullet} : sets inner BC on dyn. models. But what can we say about the surrounding star cluster?

Cluster at centre of Milky Way (pc scales) Binned kinematics from Feldmeier+2014,17

Top: Integrated kinematics, cleaned to remove bright stars.

Bottom: model fit to these data, $M_{\bullet}/10^6 M_{\odot} = 1.7 - 4.1$.

But: what lurks beneath? Is V twist real?

Cluster at centre of Milky Way (inner 1 pc)

Alternative: Schoedel et al (2009) provide (x, y, v_x, v_y) for sample of 6000 stars within 1pc of Galactic centre: (z, v_z) missing

Q: What's the mass distribution $\rho(r)$? BH vs cluster? What does the cluster look like in 3d? in 6d? Mini Gaia

Results from dynamical modelling of 6000 PMs (JM, in prep)

Use orbit-superposition (Schwarzschild) method:

- assume spherical symmetry (for now)
- no assumption about anisotropy
- no assumption about number density profile
- simultaneous fit to (x, y, v_x, v_y) of all 6000 stars (w/ errors)

Procedure:

- **1** Potential Φ : BH M_{\bullet} plus stars $\rho_{\star} \propto r^{-\alpha}$, with M_{\star} within 1 pc.
- Split phase space into blocks of orbits
- Sind orbit dist in this Φ that best matches observed distn

This yields likelihood of $(M_{\bullet}, M_{\star}, \alpha)$.

Contours of log-likelihood

Contours of log-likelihood

Contours of log-likelihood

Contours of log-likelihood

Summary of spherical models of MW

My best-fitting orbit-superposition model has:

•
$$M_{\bullet} = \underbrace{2.6}_{\pm 0.1 \text{ish}} \times 10^6 M_{\odot}$$
, around which

• the stellar mass density $\rho_{\star} \sim r^{-0.6}$, having

•
$$M_{\star} = 2.1 \times 10^6 M_{\odot}$$
 within 1 pc.

Does it look plausible? Yes!

Analysis based on Jeans equs gives consistent result.

Milky Way: BH growth in action

Evolution of MW's BH mass over time:

Puzzle: why do red and blue disagree? Not $\beta(r)$, binning. Maybe j(r)? Assumption that cluster is spherical? Non-rotating? (No!) Related to disc-like distn of young stars? Probably.

See also Fritz+2015, Chatzopoulos+2015, Feldmeier+2017.

M31

(great success)

 $D \sim 800$ kpc *N*-body/hydro models (Athanassoula & Beaton 2006; Blaña et al 2017) can match broad photometry/kinematics Examples: (A+B06)

Best models mix "classical" with plus boxy/peanut bulge. Suggest inclination angle $i = 77^{\circ}$, bar inclined $10 - 20^{\circ}$ wrt major axis.

Nowadays many surveys of outer parts (PANDAS, HELGA, ...)

Data

WFPC photometry (Lauer et al 98):

▲御▶ ▲ 理▶ 二 理

WFPC photometry (Lauer et al 98):

- E

STIS CaT long-slit kinematics (Bender et al 2005):

- E

Data

STIS CaT long-slit kinematics (Bender et al 2005):

<<p>◆□ > < □ > □

Characteristic numbers for M31 double nucleus

Distinct nucleus $L_V \simeq 6 \times 10^6 L_{\odot}$ with two peaks, P1 and P2.

P1 and P2 have identical colours: **old**, **red**. Blue cluster within P2 is known as P3.

P2 is photometric centre of galaxy (to $\sim 0.1^{\prime\prime}).$

- P1-P2 separation r = 0.5 arcsec = 2 parsec
- $\Delta v \sim$ 200 km/s
- Dynamical time $2\pi r/v \sim 10^5$ yr.

Two distinct clusters? Dynamical friction timescale only $\sim 10^8 \mbox{ yr}.$

Tremaine's (1995) eccentric disc scenario

Double nucleus is eccentric disc of stars around BH – applies to dominant old, red stellar population –

Subsequent dynamical modelling by

- Statler (1999), Salow & Statler (2001, 2004)
- Sambhus & Sridhar (2002)
- Peiris & Tremaine (2003)
- Bender et al (2005)

plus some ab initio simulation work.

Forget about stellar mass, GR. Take $\Phi = -\frac{GM_{\bullet}}{r}$.

All stars are on elliptical orbits, characterised by

- size, shape (a, e)
- orientation (ω, I, Ω) .

Stars linger at apocentre \Rightarrow bright spot off BH.

Clump of stars around a = 1, e = 0.7 projected along *z*:

→ 御 → → 注 → 一注

Forget about stellar mass, GR. Take $\Phi = -\frac{GM_{\bullet}}{r}$.

All stars are on elliptical orbits, characterised by

- size, shape (a, e)
- orientation (ω, I, Ω) .

Stars linger at apocentre \Rightarrow bright spot off BH.

Clump of stars around a = 1, e = 0.7 projected along *y*:

▲御 ▶ ▲ 臣 ▶ 二 臣

Forget about stellar mass, GR. Take $\Phi = -\frac{GM_{\bullet}}{r}$.

All stars are on elliptical orbits, characterised by

- size, shape (a, e)
- orientation (ω, I, Ω) .

Stars linger at apocentre \Rightarrow bright spot off BH.

Clump of stars around a = 1, e = 0.7 projected along los:

Euler angles: $\theta_i, \theta_i, \theta_a$

Naive 3d models of massless discs (Calum Brown & JM, MNRAS 2013)

Assume biaxial symmetry in y and z planes. Assume that orbit distn can be written as

$$f = \sum_{i} \mathbf{w}_{i} \exp\left[-\frac{(a-a_{i})^{2}}{2\sigma_{a}^{2}}\right] e \exp\left[-\frac{(\mathbf{e}-\mathbf{e}_{i})^{2}}{2\sigma_{e}^{2}}\right] \sin I \exp\left[-\frac{I^{2}}{2\sigma_{I,i}^{2}}\right]$$

Multiblob expansion

Blobs centred on fixed pts in (a, e) plane, plus $\sigma_{l,i} = \{15^{\circ}, 30^{\circ}, 45^{\circ}\}.$

Free parameters:

- $30 \times 9 \times 3$ ($n_a \times n_e \times n_i$) blob weights;
- *M*_•;
- orientation of disc on sky $(\theta_I, \theta_i, \theta_a)$.

Infer parameters from WFPC photometry + STIS kinematics.

Multiblob fit to WFPC

Multiblob fit to STIS V for different M.

Multiblob fit to STIS σ

Multiblob fit to STIS h₃

Multiblob fit to STIS h₄

Model predictions agree well with OASIS kinematic maps: V

Model *predictions* agree well with OASIS kinematic maps: σ

What does the disc look like? LOS projection:

★御★★ 国★ 三臣

multiblob expansion results

What does the disc look like? Edge-on:

▲ @ ▶ ▲ 理 ▶ … 理

multiblob expansion results

What does the disc look like? Face-on:

multiblob expansion results

What does the disc look like? Face-on:

multiblob expansion results

What does the disc look like? Face-on:

▲ 課 ▶ ▲ 注 ▶ … 注

Naive models: loose end #1

Dispersion of *I* and *e* as function of *a*: NB: $\sigma_I \neq 0.5\sigma_e!$

We've assumed that $\Phi = -\frac{GM_{\bullet}}{r}$ and find $M_{\bullet} \sim 10^8 M_{\odot}$.

But disc mass $M_{\star} \sim \frac{1}{10} M_{\bullet}$ (for $L_V = 6 \times 10^6 L_{\odot}$). \Rightarrow Keplerian Φ zeroth-order approximation only!

Tremaine (1995)

Massive disc makes orbits precess at different rates. Coherent eccentric disc won't last long.

It is reasonable to assume that:

BH-plus-disc system stationary in some rotating frame.

- What's the pattern speed Ω_p?
- How does non-Kepler Φ affect inferences about orbit distn?

Annoying: don't know M_{\bullet} , ρ_{\star} or $\Omega_{\rm p}$. **Painful:** orbits aren't simple ellipses: numerical orbit integration; some precess excruciatingly slowly.

Less naive models (Calum Brown thesis)

Potential = BH + disc: New parameters M_{\star} , $\Omega_{\rm p}$ plus $\rho_{\star}(\mathbf{x})$.

Scans over parameter space: (heroic work)

Iterating $\rho_{\star}(\mathbf{x})$ to self-consistency improves the fit!

Here are the STIS kinematics: initial model \rightarrow final model.

Summary of M31 dynamical modelling (Calum Brown thesis)

inclination $\theta_i \simeq 57^\circ$ (vs 77° for main body)

 $egin{aligned} M_{ullet}+M_{\star} &\sim 10^8\,M_{\odot}\ M_{\star} \lesssim 0.2M_{ullet} \end{aligned}$

Pattern speed $\Omega_p \lesssim 10$ km/s/pc.

... from self-consistent biaxial models with figure rotation.

Formation of P3?

U, B, V, I images of inner $3'' \times 3''$:

U-band peak compact, within P2: call it P3!

Zoom to 0.81×0.81 :

Nyquist-sampled (L) and deconvolved (R), U (top) B (bottom):

P3 has scalelength $\sim 0^{\prime\prime}_{..}075 = 0.3$ pc in U:

P1, P2: typical old, red bulge stars.

P3 has much younger spectrum (A0-type):

Spectra, colours, SBF P(k): 100-200 Myr old starbust.

▲御 ▶ ▲ 臣 ▶ 二 臣

P3: a formation scenario (Chang et al 2007)

Closed orbits in $M_{\star}/M_{\bullet} = 0.1$, $\Omega_{\rm p} = 3$ km/s/pc potential:

- Gas lost from old stars
 settles onto ~ closed orbits
 which intersect at *R*₂:
 - shock, cool(?), starbust.

Requires low pattern speed Ω_p

P3: a formation scenario (Chang et al 2007)

Closed orbits in $M_{\star}/M_{\bullet} = 0.1$, $\Omega_p = 3$ km/s/pc potential:

- Gas lost from old stars
- 2 settles onto \sim closed orbits
- which intersect at R₂:
 - shock, cool(?), starbust.

Requires low pattern speed Ω_p

Conclusions

Summary: M31 vs MW

MW:

- Cluster looks broadly like those found in other galaxies
 - well-studied formation possibilities: e.g., infall of GCs
- Know BH mass very well: $4 \times 10^6 M_{\odot}$ (S stars).
- Difficult to reproduce with "conventional" methods.
- Messy stellar distn
 - isotropic distribution of S stars
 - disc-like O/WR stars in inner pc
 - 3d/6d structure unclear
 - origin of young stars a mystery
 - extinction not well understood

M31:

- Unusual double nucleus (see also NGC 4486b)
- BH $\sim 10^8 \, M_{\odot}$
- Confirm compelling T95 eccentric disc model for old stars
- distinct, old stellar population, save for P3
- Low Ω_p , but formation? DF against triaxial bulge? $m = 1 \mod 2$ counter-rot instab?

- Data
- Eccentric discs
- Formation scenarios

How to form an eccentric disc?

Formation scenarios

How to form an eccentric disc?

- circular disc experiences dynamical friction from triaxial bulge? (Tremaine 1995)
- natural $m = 1 \mod e$? (Bacon et al 2001, Hopkins & Quataert 2010)
- Instability of counter-rotating orbits? (Kazandjian & Touma 2012)

