Scaling Laws in Disks and Exoplanets Testing Planet Formation Theories

ILARIA PASCUCCI Lunar and Planetary Laboratory, The University of Arizona

Orion Nebula: HST/ACS (Robberto et al. 2012)

Orion Nebula: HST/ACS (Robberto et al. 2012)

All young (~1Myr) stars have a circumstellar disk (after accounting for stellar multiplicity, Kraus et al. 2012)

What is the time window for planet formation?

Planet-forming disks

ALMA high-resolution observations of disks

https://almascience.eso.org/alma-science/planet-forming-disks

The Kepler Orrery III

Credit: D. Fabricky

t[BJD] = 2455215

Which disk properties remain imprinted in the exoplanet population?

Which physical processes shape planetary systems?

Are there scaling laws in disks and exoplanets?

Stages of disk evolution and dispersal MHD disk wind UV photons X-rays dust disk $\Delta t = few Myr$ V my $\Delta t \sim 10^5 \, yr$ \sim m 0.1 AU

From Alexander, Pascucci et al. 2014 (PPVI review)

How is the accreting gas losing angular momentum?

Turner et al. 2014 (PPVI review)

Stages of disk evolution and dispersal

From Alexander, Pascucci et al. 2014 (PPVI review)

Stage 2: photoevaporation takes over accretion

t=0yr

Richard Alexander

Stage 2: photoevaporation takes over accretion

Photoevaporation is driven by high-energy photons from the central star (EUV, X-rays, FUV). Reviews by Alexander, Pascucci et al. (2014); Gorti et al. (2016); Ercolano & Pascucci (2017)

Stages of disk evolution and dispersal

From Alexander, Pascucci et al. 2014 (PPVI review)

Stages of disk evolution and dispersal MHD disk wind UV photons X-rays dust disk $\Delta t = few Myr$ V my $\Delta t \sim 10^5 \, yr$ \sim m 0.1 AU

From Alexander, Pascucci et al. 2014 (PPVI review)

Disk inner regions: Dullemond & Monnier (2010)

Accretion onto young stars: Hartmann, Herczeg, Calvet (2016)

Radius [$R \oplus$]

Mulders et al. (2015a)

The scaling relation between a_{turn} and M_{star} suggests that migration (of fully formed planets and/or their building blocks) shaped the inner architecture of planetary systems

(Lee & Chiang 2017: migration of building blocks)

Stages of disk evolution and dispersal

From Alexander, Pascucci et al. 2014 (PPVI review)

Direct evidence of winds = flowing gas from the disk surface

Simon, Pascucci et al. (2016)

REFs: Pascucci & Sterzik (2009); Pascucci et al. (2011, 2012); Szulágyi et al. (2012); Rigliaco, Pascucci et al. (2013); Pascucci et al. (2014); Simon, Pascucci et al. (2016)

Evolution of disk winds

From the review article of Ercolano & Pascucci (2017)

Migrating giant planets in dispersing disks

t=0yr

Richard Alexander

Planet Outside Gap - t=1.95Myr

Monte Carlo simulations of planet-disk models with randomly sampled initial conditions (e.g. disk mass; planet mass, location, and time of formation). Alexander & Pascucci (2012).

Deserts and pile-ups of giant planets

Scaling relation for the gap: R_{crit} ~ M_{star}/c_s²

Alexander & Pascucci (2012)

Stages of disk evolution and dispersal

From Alexander, Pascucci et al. 2014 (PPVI review)

The outer disk: disk masses & solids available to form planets

Pascucci et al. (2016): "A Steeper than Linear Disk Mass-Stellar Mass Scaling Relation"

Papers: – Pascucci et al. 2016 (dust disk masses) – Hendler, Mulders, Pascucci et al. 2017 (disk outer radius - dust mass scaling relation); - Long, Herczeg, Pascucci et al. 2017 (gas disk masses); - Manara et al. 2017 (stellar and accretion properties); – Mulders, Pascucci et al. 2017 (accretion rates vs disk masses)

Based on ALMA (I. Pascucci, PI) + VLT/XShooter (Herczeg and Testi, PI) data

Optically thin dust emission in the mm \rightarrow Disk mass

$$F_{v} = \frac{\cos\theta}{d^{2}} \int_{Rin}^{Rout} B_{v}(T_{d})(1 - e^{-\tau_{v}}) 2\pi I$$

$$\tau_v = \frac{\kappa_v \Sigma}{\cos \theta}$$

$$if \tau_v < 1$$

RdR

The relevance of the disk outer radius on T_{dust} is discussed in

Hendler, Mulders, Pascucci et al. (2017)

Evolution of dust disk masses

Pascucci et al. (2016)

The time for radial drift to remove the largest grains is faster around lower mass stars

Implication: dust disks around lower mass stars are smaller than those around higher mass stars

Dust disk masses in Chamaeleon I (2-3Myr)

How dust disk masses compare to the distribution of solids in planetary systems?

Pascucci et al. (2016)

M dwarfs have 3.5 times more 1-2.8R_E planets than FGK stars (but two times less Neptune-size planets)

0.5

 $M_{star} (M_{sun})$

1.0

The chemistry and dynamics of planet formation around low-mass stars

JWST science case: detect volatiles released inside the snowline of disks around low-mass dwarfs. Exo-planetary systems around M dwarfs will be soon discovered by TESS

adapted from Cleeves (2015)

RADLite (Pontoppidan et al. 2009)

- Which disk properties remain imprinted in the exoplanet population? Sharp edges, gaps
 - Which physical processes shape planetary systems? Disk winds, migration of solids

Are there scaling laws in disks and exoplanets? Several scaling relations with stellar mass

EPOS – The Exoplanet Population Observation Simulator

Mulders et al. in prep.

16.0

Additional Slides

from G. Mulders (review chapter to appear in "Handbook of Exoplanets", eds. Dee & Belmonte)

Region	Age (Myr)	$\alpha_{T_{20}}$	$\beta_{T_{20}}$	α	β	Di
Taurus	1–2	1.6(0.2)	1.2(0.1)	1.1(0.2)	1.0(0.1)	0
Lupus ^a	1–3	1.8(0.3)	1.6(0.2)	1.1(0.3)	1.4(0.2)	0
Cha I	2–3	1.9(0.2)	1.1(0.1)	1.3(0.2)	1.1(0.1)	0
Upper Sco	10	2.7(0.4)	0.9(0.2)	1.9(0.4)	0.8(0.2)	0

Table 4 $M_{\rm dust}$ - M_* Relations

Not all transition disks are dispersing disks!

How can we explain the population of high accreting transition disks?

Twenty-nine out of 72 discs (approx. 40%) are consistent with dust cavities open by photoevaporation

From the review article of Ercolano & Pascucci (2017)

The scatter in Macc-Mdust can be reproduced IF the viscous timescale is long (a few Myr), i.e. disks have not substantially evolved in the Chal and Lupus star-forming regions.

from Mulders et al. (2017) but see also Lodato et al. (2017)

MHD winds are common!

Scaling relation for the gap (photoevaporation): $R_{crit} \sim M_{star}/c_s^2$

Snowline (accretion): $R_{sn} \sim (M_{star})^{1/3} \propto (M_{acc})^{4/9} \sim (M_{star})^{1.2}$

Snowline (irradiation

n):
$$R_{sn} \sim (L_{star})^{1/2} \sim (M_{star})^2$$

Figure 7. Planet radius distribution (left) and cumulative planet mass per star (right) for orbital periods between 2 and 50 days for M, G, K and F stars. The bins in the upper panel are twice as wide as in Figure 1.

dwarfs: 134796, Rst= 0.91, Mst=0.90 K: 27077, Rst= 0.71, Mst=0.72 M: 3229, Rst= 0.38, Mst=0.39 G: 57292, Rst= 0.90, Mst=0.87 F: 47089, Rst= 1.07, Mst=1.08

Mulders et al. (2015b)

Power-law Index of Turnover Radius as Function of Stellar Mass for the Different Truncation Mechanisms Discussed in Section 4.1

Mechanism	Location	Assumption	Equa
Co-rotation	$M_{*}^{1/3}$		11
Sublimation	$M_{*}^{0.7}$	$L_{\rm PMS} \propto M_*^{1.4}$	12
	$M_{*}^{11/9}$	q = 2	13
	$M_{*}^{7/9}$	q = 1	13
Tides (stellar)	$M_{*}^{9/13}$	$R_* \propto M_*$	15
Tides (planetary)	$M_{*}^{3/13}$		16

Mulders et al. (2015a)

